【NOIP2016提高A组模拟9.9】Brothers 题解

【NOIP2016提高A组模拟9.9】Brothers

Description

在遥远的西方有一个古老的王国,国王将他的王国分成了网格状,每一块称之为一个城市。在国王临死前,他将这些城市分给了自己的N个儿子(编号为0到N-1)。然而这N个王子的关系不是很好,0讨厌1,1讨厌2,2讨厌3……N-1讨厌0。
在国王死后,这种不好的关系使得王子之间爆发了战争。战斗只会在相邻的两个城市之间爆发(共有一条边称之为相邻),并且只有当A讨厌B时,A才会对B发起战斗,结果必定是A获得这次战斗的胜利。当一方胜利后,他所进攻的城市就会变成进攻方的。许多战斗是同时发生的,我们称之为一场战役。当多场战役发生之后,剩下的王子将不再发生战争。
例如,如果有3个王子,那么战斗过程如下所示:
【NOIP2016提高A组模拟9.9】Brothers 题解

Input

第一行输入4个数,N,R,C,K。有N个王子,王国分为R*C的网格图。询问K场战役之后的城市归属图。
下面R行,每行C个数字,表示一开始城市的归属。

Output

R行C列,表示K场战役之后的城市归属图。

Sample Input

Brother1.in
3 4 4 3
0 1 2 0
1 0 2 0
0 1 2 0
0 1 2 2

Brother2.in
4 2 3 4
1 0 3
2 1 2

Brother3.in
8 4 2 1
0 7
1 6
2 5
3 4

Sample Output

Brother1.out
2 2 2 0
2 1 0 1
2 2 2 0
0 2 0 0

Brother2.out
1 0 3
2 1 2

Brother3.out
7 6
0 5
1 4
2 3

Data Constraint

2<=N<=100
2<=R,C<=100
1<=K<=100
保证数据合法

题解

看到数据范围这么小,很显然可以直接按照题意模拟
复杂度\(O(4RCK)\)

CODE

#include<cstdio>
#include<string>
#define R register int
#define N 105
#define ll long long
#define inf 0x3f3f3f3f
using namespace std;
const int fx[4]={-1,1,0,0},fy[4]={0,0,-1,1};
int a[2][N][N],n,r,c,k;
int max(int a,int b) {return a>b?a:b;}
int min(int a,int b) {return a<b?a:b;}
void read(int &x)
{
	x=0;int f=1;char ch=getchar();
	while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
	while (isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48),ch=getchar();x*=f;
}
int main()
{
	read(n);read(r);read(c);read(k);int x=0;
	for (R i=1;i<=r;++i)
		for (R j=1;j<=c;++j) read(a[x][i][j]);
	while (k--)
	{
		for (R i=1;i<=r;++i)
			for (R j=1;j<=c;++j)
				a[x^1][i][j]=a[x][i][j];
		for (R i=1;i<=r;++i)
			for (R j=1;j<=c;++j)
			{
				for (R v=0;v<4;++v)
					if (i+fx[v]>0 && i+fx[v]<=r && j+fy[v]>0 && j+fy[v]<=c)
						if (a[x][i][j]+1==a[x][i+fx[v]][j+fy[v]] || a[x][i][j]==n-1 && a[x][i+fx[v]][j+fy[v]]==0) a[x^1][i+fx[v]][j+fy[v]]=a[x][i][j];
			}	
		x^=1; 
	}
	for (R i=1;i<=r;++i)
	{
		for (R j=1;j<=c;++j)
			printf("%d ",a[x][i][j]);
		printf("\n");
	}
 	return 0;
}
上一篇:openvslam


下一篇:[NOIP2016]组合数问题——排列组合问题