1. 自定义神经网络卷积核权重
神经网络被深度学习者深深喜爱,究其原因之一是神经网络的便利性,使用者只需要根据自己的需求像搭积木一样搭建神经网络框架即可,搭建过程中我们只需要考虑卷积核的尺寸,输入输出通道数,卷积方式等等。
我们使用惯了自带的参数后,当我们要自定义卷积核参数时,突然有种无从下手的感觉,哈哈哈哈哈哈哈哈~~,请允许我开心下,嘿嘿!因为笔者在初入神经网络时也遇到了同样的问题,当时踩了太多坑了,宝宝想哭(灬ꈍ ꈍ灬)!让我悲伤的是,找遍了各个资源区,也没有找到大家的分享。因此,我想把我的方法写出来,希望能帮助到各位宝宝,开心(*^▽^*)。
话不多说,正文开始......
2. 定义卷积核权重
我这里是自定义的dtt系数卷积核权重,直接上权重代码:
2.1 dtt系数权重Code
def dtt_matrix(n): 这个函数是n*n的DTT系数矩阵,笔者的是8*8的系数矩阵。
def dtt_kernel(out_channels, in_channels, kernel_size): 这个方法是设定权重,权重需要包括4个参数(输出通道数,输入通道数,卷积核高,卷积核宽),这里有很多细节要注意,宝宝们要亲自躺下坑,才能映像深刻也,我就不深究了哈,(#^.^#)。
import numpy as np import torch import torch.nn as nn # ================================ # DTT coefficient matrix of n * n # ================================ def dtt_matrix(n): dtt_coe = np.zeros([n, n], dtype='float32') for i in range(0, n): dtt_coe[0, i] = 1/np.sqrt(n) dtt_coe[1, i] = (2*i + 1 - n)*np.sqrt(3/(n*(np.power(n, 2) - 1))) for i in range(1, n-1): dtt_coe[i+1, 0] = -np.sqrt((n-i-1)/(n+i+1)) * np.sqrt((2*(i+1)+1)/(2*(i+1)-1)) * dtt_coe[i, 0] dtt_coe[i+1, 1] = (1 + (i+1)*(i+2)/(1-n)) * dtt_coe[i+1, 0] dtt_coe[i+1, n-1] = np.power(-1, i+1) * dtt_coe[i+1, 0] dtt_coe[i+1, n-2] = np.power(-1, i+1) * dtt_coe[i+1, 1] for j in range(2, int(n/2)): t1 = (-(i+1) * (i+2) - (2*j-1) * (j-n-1) - j)/(j*(n-j)) t2 = ((j-1) * (j-n-1))/(j * (n-j)) dtt_coe[i+1, j] = t1 * dtt_coe[i+1, j-1] + t2 * dtt_coe[i+1, j-2] dtt_coe[i+1, n-j-1] = np.power(-1, i-1) * dtt_coe[i+1, j] return dtt_coe # =============================================================== # DTT coefficient matrix of (out_channels * in_channels * n * n) # =============================================================== def dtt_kernel(out_channels, in_channels, kernel_size): dtt_coe = dtt_matrix(kernel_size) dtt_coe = np.array(dtt_coe) dtt_weight = np.zeros([out_channels, in_channels, kernel_size, kernel_size], dtype='float32') temp = np.zeros([out_channels, in_channels, kernel_size, kernel_size], dtype='float32') order = 0 for i in range(0, kernel_size): for j in range(0, kernel_size): dtt_row = dtt_coe[i, :] dtt_col = dtt_coe[:, j] dtt_row = dtt_row.reshape(len(dtt_row), 1) dtt_col = dtt_col.reshape(1, len(dtt_col)) # print("dtt_row: ", dtt_row) # print("dtt_col: ", dtt_col) # print("i:", i, "j: ", j) temp[order, 0, :, :] = np.dot(dtt_row, dtt_col) order = order + 1 for i in range(0, in_channels): for j in range(0, out_channels): # dtt_weight[j, i, :, :] = flip_180(temp[j, 0, :, :]) dtt_weight[j, i, :, :] = temp[j, 0, :, :] return torch.tensor(dtt_weight)
2.2 'same'方式卷积
如果宝宝需要保持卷积前后的数据尺寸保持不变,即'same'方式卷积,那么你直接使用我这个卷积核(提一下哟,这个我也是借自某位前辈的,我当时没备注哇,先在这里感谢那位前辈,前辈如果路过,还请留言小生哈,(#^.^#))。
import torch.utils.data from torch.nn import functional as F import math import torch from torch.nn.parameter import Parameter from torch.nn.functional import pad from torch.nn.modules import Module from torch.nn.modules.utils import _single, _pair, _triple class _ConvNd(Module): def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation, transposed, output_padding, groups, bias): super(_ConvNd, self).__init__() if in_channels % groups != 0: raise ValueError('in_channels must be divisible by groups') if out_channels % groups != 0: raise ValueError('out_channels must be divisible by groups') self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.dilation = dilation self.transposed = transposed self.output_padding = output_padding self.groups = groups if transposed: self.weight = Parameter(torch.Tensor( in_channels, out_channels // groups, *kernel_size)) else: self.weight = Parameter(torch.Tensor( out_channels, in_channels // groups, *kernel_size)) if bias: self.bias = Parameter(torch.Tensor(out_channels)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): n = self.in_channels for k in self.kernel_size: n *= k stdv = 1. / math.sqrt(n) self.weight.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) def __repr__(self): s = ('{name}({in_channels}, {out_channels}, kernel_size={kernel_size}' ', stride={stride}') if self.padding != (0,) * len(self.padding): s += ', padding={padding}' if self.dilation != (1,) * len(self.dilation): s += ', dilation={dilation}' if self.output_padding != (0,) * len(self.output_padding): s += ', output_padding={output_padding}' if self.groups != 1: s += ', groups={groups}' if self.bias is None: s += ', bias=False' s += ')' return s.format(name=self.__class__.__name__, **self.__dict__) class Conv2d(_ConvNd): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True): kernel_size = _pair(kernel_size) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) super(Conv2d, self).__init__( in_channels, out_channels, kernel_size, stride, padding, dilation, False, _pair(0), groups, bias) def forward(self, input): return conv2d_same_padding(input, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups) # custom con2d, because pytorch don't have "padding='same'" option. def conv2d_same_padding(input, weight, bias=None, stride=1, padding=1, dilation=1, groups=1): input_rows = input.size(2) filter_rows = weight.size(2) effective_filter_size_rows = (filter_rows - 1) * dilation[0] + 1 out_rows = (input_rows + stride[0] - 1) // stride[0] input_cols = input.size(3) filter_cols = weight.size(3) effective_filter_size_cols = (filter_cols - 1) * dilation[1] + 1 out_cols = (input_cols + stride[1] - 1) // stride[1] padding_needed = max(0, (out_rows - 1) * stride[0] + effective_filter_size_rows -input_rows) padding_rows = max(0, (out_rows - 1) * stride[0] + (filter_rows - 1) * dilation[0] + 1 - input_rows) rows_odd = (padding_rows % 2 != 0) padding_cols = max(0, (out_cols - 1) * stride[1] + (filter_cols - 1) * dilation[1] + 1 - input_cols) cols_odd = (padding_cols % 2 != 0) if rows_odd or cols_odd: input = pad(input, [0, int(cols_odd), 0, int(rows_odd)]) return F.conv2d(input, weight, bias, stride, padding=(padding_rows // 2, padding_cols // 2), dilation=dilation, groups=groups)
2.3 将权重赋给卷积核
此处才是宝宝们最关心的吧,不慌,这就来了哈,开心(*^▽^*),进入正文了(#^.^#)。
这里给了一个简单的网络模型(一个固定卷积+3个全连接,全连接是1*1的Conv2d),代码里我给了注释,宝宝们应该能秒懂滴,(*^▽^*)!
import torch import torchvision import torch.nn as nn import torch.nn.functional as F import numpy as np import dtt_kernel import util import paddingSame # 定义权重 dtt_weight1 = dtt_kernel.dtt_kernel(64, 2, 8) class DttNet(nn.Module): def __init__(self): super(DttNet, self).__init__()
self.conv1 = paddingSame.Conv2d(2, 64, 8)
# 将权重赋给卷积核 self.conv1.weight = nn.Parameter(dtt_weight1, requires_grad=False) self.fc1 = util.fc(64, 512, 1) self.fc2 = util.fc(512, 128, 1) self.fc3 = util.fc(128, 2, 1, last=True) def forward(self, x): x = self.conv1(x) x = self.fc1(x) x = self.fc2(x) x = self.fc3(x) return x
2.4 补充我的util类
import torch.nn as nn def conv(in_channels, out_channels, kernel_size, stride=1, dilation=1, batch_norm=True): if batch_norm: return nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=(kernel_size // 2)), nn.BatchNorm2d(out_channels), nn.ReLU() ) else: return nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=(kernel_size // 2)), nn.ReLU() ) def fc(in_channels, out_channels, kernel_size, stride=1, bias=True, last=False): if last: return nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=(kernel_size // 2)), ) else: return nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=(kernel_size // 2)), nn.BatchNorm2d(out_channels), nn.ReLU() )
3. 总结
哇哦,写完了耶,不晓得宝宝们有没得收获呢,o((⊙﹏⊙))o,o((⊙﹏⊙))o。大家不懂的可以再下面留言哟,我会时常关注我家的园子呢。若有不足之处,宝宝们也在留言区吱我一下哟,我们下次再见,┏(^0^)┛┏(^0^)┛。