给你一个二维矩阵 matrix 和一个整数 k ,矩阵大小为 m x n 由非负整数组成。
矩阵中坐标 (a, b) 的 值 可由对所有满足 0 <= i <= a < m 且 0 <= j <= b < n 的元素 matrix[i][j](下标从 0 开始计数)执行异或运算得到。
请你找出 matrix 的所有坐标中第 k 大的值(k 的值从 1 开始计数)。
示例 1:
输入:matrix = [[5,2],[1,6]], k = 1
输出:7
解释:坐标 (0,1) 的值是 5 XOR 2 = 7 ,为最大的值。
示例 2:
输入:matrix = [[5,2],[1,6]], k = 2
输出:5
解释:坐标 (0,0) 的值是 5 = 5 ,为第 2 大的值。
示例 3:
输入:matrix = [[5,2],[1,6]], k = 3
输出:4
解释:坐标 (1,0) 的值是 5 XOR 1 = 4 ,为第 3 大的值。
示例 4:
输入:matrix = [[5,2],[1,6]], k = 4
输出:0
解释:坐标 (1,1) 的值是 5 XOR 2 XOR 1 XOR 6 = 0 ,为第 4 大的值。
提示:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 1000
0 <= matrix[i][j] <= 106
1 <= k <= m * n
class Solution {
public:
int kthLargestValue(vector<vector<int>>& matrix, int k) {
int m = matrix.size(),n = matrix[0].size();
vector<vector<int>> ret(m+1, vector<int>(n+1));
vector<int> ans;
for(int i=1;i<=m;i++)
for(int j = 1;j<=n;j++)
{
ret[i][j]=ret[i-1][j-1]^ret[i-1][j]^ret[i][j-1]^matrix[i-1][j-1];
ans.push_back(ret[i][j]);
}
nth_element(ans.begin(),ans.begin()+k-1,ans.end(),greater<int>());
return ans[k-1];
}
};