P3436 [POI2006]PRO-Professor Szu

P3436 [POI2006]PRO-Professor Szu

题目描述

n个别墅以及一个主建筑楼,从每个别墅都有很多种不同方式走到主建筑楼,其中不同的定义是(每条边可以走多次,如果走边的顺序有一条不同即称两方式不同)。

询问最多的不同方式是多少,以及有多少个别墅有这么多方式,按照顺序输出别墅编号。

如果最多不同方式超过了36500那么都视作zawsze

输入输出样例

输入样例#1:
3 5
1 2
1 3
2 3
3 4
3 4
输出样例#1:
4
1
1

这题反向建个图,缩个点,跑个topo就没了?显然没有这么容易,这里说一下题目的坑点。首先这个题目是要求从n+1号结点出发,那么如果n+1号点不能到达所有的结点会怎么样呢?

P3436 [POI2006]PRO-Professor Szu

看上面这张图,假设这是我们的反向图,按理说我们应该从6号点开始topo,但是5号点自始至终都不会入队,所以说4号点的入度就不可能减到0,这样的话4号点就无法进行topo,那么这样的答案也肯定是错的。要解决这个问题也很简单,就是在缩点时只缩从n+1号点能到达的结点,然后再建新图,而且建的新图中不能含有从n+1号点不能到达的结点。

 tarjan(n+);//这里只从n+1号点开始缩点
for(int i=;i<=n+;i++)
{
if(!dfn[i]) continue;//如果某一个点是n+1号点无法到达的,那么就不能把这个点加到图中
for(int j=last[i];j;j=g[j].next)
{
int v=g[j].to;
if(co[i]!=co[v])
{
add1(co[i],co[v]);
de[co[v]]++;
}
}
}

建图

但是这样还是A不了,这又是为啥呢?原来是自环惹的祸。

P3436 [POI2006]PRO-Professor Szu

看上边的图,我们已经解决了五号点这个从起点无法到达的点的问题了,但是如果四号点给你来一个自环,那不好意思,你又挂了,要是按正常的缩点的话,四号点应该自己单独成为一个强联通分量,按理应该不需要管他,直接dp就好了,但是如果有自环,那么只要经过4号点,方案数就一定会变为正无穷,所以说,自环也是一定要考虑在内的,但是该怎么做呢,这个就更简单了,只需在读入的时候加个特判就好了,最后统计是把自环也当成环处理即可。

 for(int i=;i<=m;i++)
{
aa=read();bb=read();
if(aa==bb)
b[aa]=;//如果有自环,就标记一下;
add(bb,aa);
}

判断自环

然而这样还是A不了,这究竟是为什么呢?后来经我计算发现36500*1000000=36500000000P3436 [POI2006]PRO-Professor Szu

然后就GG了,果断#define int long long,然后就A了……

真的是巨坑无比的一道题目。

 #include<iostream>
#include<string>
#include<cmath>
#include<cstring>
#include<cstdio>
#include<stack>
#include<queue>
#define int long long
#define maxn 2000005
using namespace std; struct edge
{
int next,to;
}g[maxn<<],g1[maxn<<];
int n,m,num,tot,col,num1,aa,bb,cnt,tott,pd,de[maxn],t[maxn];
long long ans;
long long f[maxn];
int last[maxn],dfn[maxn],low[maxn],co[maxn],last1[maxn],a[maxn],b[maxn],c[maxn];
stack<int>s;
stack<int>ss; inline int read()
{
char c=getchar();
int x=,res=;
while(c<''||c>'')
{
if(c=='-')
x=-;
c=getchar();
}
while(c>=''&&c<='')
{
res=res*+(c-'');
c=getchar();
}
return x*res;
} void add(int from,int to)
{
g[++num].next=last[from];
g[num].to=to;
last[from]=num;
} void add1(int from,int to)
{
g1[++num1].next=last1[from];
g1[num1].to=to;
last1[from]=num1;
} void tarjan(int u)
{
dfn[u]=low[u]=++tot;
s.push(u);
for(int i=last[u];i;i=g[i].next)
{
int v=g[i].to;
if(!dfn[v])
{
tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(!co[v])
{
low[u]=min(low[u],dfn[v]);
}
}
if(low[u]==dfn[u])
{
col++;cnt=;
for(;;)
{
int x=s.top();s.pop();
co[x]=col;
cnt++;
if(x==u) break;
}
a[col]=cnt;
}
} void topo()
{
ss.push(co[n+]);
if(c[co[n+]]==)
{
f[co[n+]]=;
}
else
{
f[co[n+]]=;
}
while(ss.size())
{
int u=ss.top();ss.pop();
for(int i=last1[u];i;i=g1[i].next)
{
int v=g1[i].to;
if(c[v]==)
{
f[v]=;
}
else
{
f[v]+=f[u];
}
de[v]--;
if(de[v]==)
ss.push(v);
}
}
} signed main()
{
n=read();m=read();
for(int i=;i<=m;i++)
{
aa=read();bb=read();
if(aa==bb)
b[aa]=;//如果有自环,就标记一下;
add(bb,aa);
}
tarjan(n+);//这里只从n+1号点开始缩点
for(int i=;i<=n+;i++)
{
if(!dfn[i]) continue;//如果某一个点是n+1号点无法到达的,那么就不能把这个点加到图中
for(int j=last[i];j;j=g[j].next)
{
int v=g[j].to;
if(co[i]!=co[v])
{
add1(co[i],co[v]);
de[co[v]]++;
}
}
}
for(int i=;i<=n+;i++)
{
if(b[i]==)
{
c[co[i]]=;
}
if(a[co[i]]>)
{
c[co[i]]=;
}
}
topo();
for(int i=;i<=n;i++)
{
if(f[co[i]]>)
{
pd=;
}
ans=max(ans,f[co[i]]);
}
if(pd==)
{
printf("zawsze\n");
for(int i=;i<=n;i++)
{
if(f[co[i]]>)
{
t[++tott]=i;
}
}
printf("%d\n",tott);
for(int i=;i<=tott;i++)
{
printf("%d ",t[i]);
}
return ;
}
else
{
printf("%lld\n",ans);
for(int i=;i<=n;i++)
{
if(f[co[i]]==ans)
t[++tott]=i;
}
printf("%d\n",tott);
for(int i=;i<=tott;i++)
{
printf("%d ",t[i]);
}
return ;
}
}
上一篇:bzoj1513【POI2006】Tet-Tetris 3D


下一篇:执行计划中常见index访问方式(转)