[转]集成学习之Adaboost算法原理小结

from : https://www.cnblogs.com/pinard/p/6133937.html

集成学习原理小结中,我们讲到了集成学习按照个体学习器之间是否存在依赖关系可以分为两类,第一个是个体学习器之间存在强依赖关系,另一类是个体学习器之间不存在强依赖关系。前者的代表算法就是是boosting系列算法。在boosting系列算法中, Adaboost是最著名的算法之一。Adaboost既可以用作分类,也可以用作回归。本文就对Adaboost算法做一个总结。

1. 回顾boosting算法的基本原理

    在集成学习原理小结中,我们已经讲到了boosting算法系列的基本思想,如下图:

[转]集成学习之Adaboost算法原理小结

    从图中可以看出,Boosting算法的工作机制是首先从训练集用初始权重训练出一个弱学习器1,根据弱学习的学习误差率表现来更新训练样本的权重,使得之前弱学习器1学习误差率高的训练样本点的权重变高,使得这些误差率高的点在后面的弱学习器2中得到更多的重视。然后基于调整权重后的训练集来训练弱学习器2.,如此重复进行,直到弱学习器数达到事先指定的数目T,最终将这T个弱学习器通过集合策略进行整合,得到最终的强学习器。  

    不过有几个具体的问题Boosting算法没有详细说明。

    1)如何计算学习误差率e?

    2) 如何得到弱学习器权重系数

上一篇:集成学习-Task4 Boosting


下一篇:Adaboost