一. 二叉树定义
二叉树具有天然的递归特性,凡是二叉树相关题,首先应该联想到递归
struct BinTreeNode {
BinTreeNode* left;
BinTreeNode* right;
int val;
BinTreeNode(int value) : left(nullptr), right(nullptr), val(value) { }
};
二. 二叉树遍历
详见笔者博文:二叉树遍历大总结
#include <iostream>
#include <vector>
#include <stack>
using namespace std; // 二叉树递归定义
struct BinTreeNode {
BinTreeNode* left;
BinTreeNode* right;
int val;
BinTreeNode(int value) : left(NULL), right(NULL), val(value) { }
}; // 根据结点值构建二叉树
BinTreeNode* BuildBinTree(BinTreeNode* root, int value) {
if (root == NULL) {
root = new BinTreeNode(value); // 结点为空,new一个节点
} else if (value <= root->val) {
root->left = BuildBinTree(root->left, value);
} else {
root->right = BuildBinTree(root->right, value);
}
return root;
} // 先序遍历,递归
void PreOrder(BinTreeNode* root) {
if (root == NULL) return;
std::cout << root->val << "-->"; // 访问节点
PreOrder(root->left);
PreOrder(root->right);
} // 先序遍历,非递归,栈版本
void PreOrderStk(BinTreeNode* root) {
if (root == NULL) return;
std::stack<BinTreeNode*> stk;
while (root != NULL || !stk.empty()) {
while (root != NULL) {
std::cout << root->val << "-->"; // 访问节点
stk.push(root);
root = root->left; // 深度优先搜索到最左节点,然后回溯
}
BinTreeNode* cur = stk.top();
stk.pop();
root = cur->right; // 转向右子树
}
} // 先序遍历,非递归,非栈,Morris
void PreOrderMorris(BinTreeNode* root) {
if (root == NULL) return;
BinTreeNode* prev = NULL;
BinTreeNode* cur = root; // cur为正在访问的结点
while (cur != NULL) {
if (cur->left == NULL) {
std::cout << cur->val << "-->"; // 访问节点
cur = cur->right;
} else {
prev = cur->left; // 前驱结点为 左子树最右下节点
while (prev->right != NULL && prev->right != cur) {
prev = prev->right;
}
if (prev->right == NULL) { // 还没线索化,则建立线索
std::cout << cur->val << "-->"; // 仅这一行与中序不同
prev->right = cur; // 建立线索
cur = cur->left; // 转向处理左子树
} else {
cur = cur->right; // 转向处理右子树
prev->right = NULL; // 已经线索化,则删除线索
}
}
}
} // 中序遍历,递归
void InOrder(BinTreeNode* root) {
if (root == NULL) return;
InOrder(root->left);
std::cout << root->val << "-->"; // 访问节点
InOrder(root->right);
} // 中序遍历,非递归,栈版本
void InOrderStk(BinTreeNode* root) {
if (root == NULL) return;
std::stack<BinTreeNode*> stk;
while (root != NULL || !stk.empty()) {
while (root != NULL) {
stk.push(root);
root = root->left; // 深度优先搜索到最左节点,然后回溯
}
BinTreeNode* cur = stk.top();
stk.pop();
std::cout << cur->val << "-->"; // 访问节点
root = cur->right; // 转向右子树
}
} // 中序遍历,非递归,非栈,Morris
void InOrderMorris(BinTreeNode* root) {
if (root == NULL) return;
BinTreeNode* prev = NULL;
BinTreeNode* cur = root; // cur为正在访问的结点
while (cur != NULL) {
if (cur->left == NULL) {
std::cout << cur->val << "-->"; // 访问节点
cur = cur->right;
} else {
prev = cur->left; // 前驱结点为 左子树最右下节点
while (prev->right != NULL && prev->right != cur) {
prev = prev->right;
}
if (prev->right == NULL) { // 还没线索化,则建立线索
prev->right = cur; // 建立线索
cur = cur->left; // 转向处理左子树
} else {
std::cout << cur->val << "-->"; // 已经线索化,则访问节点,并删除线索
cur = cur->right; // 转向处理右子树
prev->right = NULL; // 删除线索
}
}
}
} // 后序遍历,递归
void PostOrder(BinTreeNode* root) {
if (root == NULL) return;
PostOrder(root->left);
PostOrder(root->right);
std::cout << root->val << "-->";
} // 后序遍历,非递归,栈版本
void PostOrderStk(BinTreeNode* root) {
if (root == NULL) return;
std::stack<BinTreeNode*> stk;
BinTreeNode* cur = root;
BinTreeNode* prev = NULL;
do {
while (cur != NULL) {
stk.push(cur);
cur = cur->left;
}
prev = NULL;
while (!stk.empty()) {
cur = stk.top();
stk.pop();
if (cur->right == prev) { // 从右子树返回,表示其右子树已经访问完毕
std::cout << cur->val << "-->";
prev = cur;
} else {
stk.push(cur);
cur = cur->right; // 其右子树还未访问,转向其右子树访问
break;
}
}
} while (!stk.empty());
} // 层次遍历,递归版
void LevelOrder(BinTreeNode* root, int level, std::vector<std::vector<int>>& res) {
if (root == NULL) return;
if (level > res.size()) {
res.push_back(std::vector<int>());
}
res.at(level - ).push_back(root->val);
LevelOrder(root->left, level + , res);
LevelOrder(root->right, level + , res);
}
std::vector<std::vector<int>> LevelOrderHelp(BinTreeNode* root) {
std::vector<std::vector<int>> res;
LevelOrder(root, , res);
return res;
} // 层次遍历,非递归,队列版
void LevelOrderQueue(BinTreeNode* root) {
if (root == NULL) return;
std::deque<BinTreeNode*> dequeTreeNode;
dequeTreeNode.push_back(root);
while (!dequeTreeNode.empty()) {
BinTreeNode* cur = dequeTreeNode.front();
dequeTreeNode.pop_front();
std::cout << cur->val << "-->"; // 访问节点
if (cur->left != NULL) dequeTreeNode.push_back(cur->left);
if (cur->right != NULL) dequeTreeNode.push_back(cur->right);
}
} int main() {
// your code goes here
std::vector<int> num = {, , , , , , , , };
BinTreeNode* root = nullptr;
for (auto val : num) {
root = BuildBinTree(root, val);
}
std::cout << "1:PreOrder:" << std::endl;
std::cout << "\t PreOrder:" ;
PreOrder(root);
std::cout << std::endl;
std::cout << "\t PreOrderStk:";
PreOrderStk(root);
std::cout << std::endl;
std::cout << "\t PreOrderMorris:";
PreOrderMorris(root);
std::cout << std::endl; std::cout << "2:InOrder:" << std::endl;
std::cout << "\t InOrder:";
InOrder(root);
std::cout << std::endl;
std::cout << "\t InOrderStk:";
InOrderStk(root);
std::cout << std::endl;
std::cout << "\t InOrderMorris:";
InOrderMorris(root);
std::cout << std::endl; std::cout << "3:PostOrder:" << std::endl;
std::cout << "\t PostOrder:";
PostOrder(root);
std::cout << std::endl;
std::cout << "\t PostOrderStk:";
PostOrderStk(root);
std::cout << std::endl; std::cout << "4:LevelOrder:" << std::endl;
std::cout << "\t LevelOrder:";
LevelOrderQueue(root);
std::cout << std::endl;
return ;
}
三. 二叉树构建
1. 先序序列和中序序列构建一颗二叉树 中序序列和后序序列构建一棵二叉树
注:为什么先序和后序不能确定一棵二叉树?(例如:先序ABCD,后序CBDA)
给定先序遍历序列和后序遍历序列,求有多少种不同形态的二叉树?
考虑简单的两个节点A和B,前序遍历为AB,后序遍历为BA,则会存在两种二叉树: A->left=B 和 A->right=B
存在不同二叉树的原因在于某节点缺少其中一个子树,在遍历序列中呈现出前序和后序遍历中节点的值相邻但顺序相反(例如先序AB,后序BA),那么总的二叉树数量番倍
int BinTreeNum(const std::vector<int>& preOrder, const std::vector<int>& postOrder) {
assert(preOrder.size() == postOrder.size());
int num = 1;
for (int i = ; i < preOrder.size(); ++i) {
auto iter = std::find(postOrder.begin(), postOrder.end(), preOrder.at(i));
int index = std::distance(postOrder.begin(), iter);
if (i < preOrder.size() - && index > && preOrder.at(i+1) == postOrder.at(index-1)) {
num *= ;
}
}
return num;
}
四. 二叉树判断
1. 判断二叉查找树BST
2. 判断平衡二叉树
3. 判断对称二叉树
4. 判断相同二叉树
5. 判断二叉树的子树
五. 二叉树路径相关问题
1. 二叉树路径和问题
2. 二叉树节点之间的最大距离(任意两个节点之间的最大步数)
二叉树中相距最远的两个节点之间的距离。
递归解法:
(1)如果二叉树为空,返回0,同时记录左子树和右子树的深度,都为0
(2)如果二叉树不为空,最大距离要么是左子树中的最大距离,要么是右子树中的最大距离,要么是左子树节点中到根节点的最大距离+右子树节点中到根节点的最大距离,同时记录左子树和右子树节点中到根节点的最大距离
int GetMaxDistance(BinTreeNode* root, int& maxLeft, int& maxRight) {
// maxLeft, 左子树中的节点距离根节点的最远距离
// maxRight, 右子树中的节点距离根节点的最远距离
if (root == NULL) {
maxLeft = ;
maxRight = ;
return ;
}
int maxLL, maxLR, maxRL, maxRR;
int maxDistLeft = ;
int maxDistRight = ; if (root->left != NULL) {
maxDistLeft = GetMaxDistance(root->left, maxLL, maxLR);
maxLeft = std::max(maxLL, maxLR) + ;
} else {
maxDistLeft = ;
maxLeft = ;
} if (root->right != NULL) {
maxDistRight = GetMaxDistance(root->right, maxRL, maxRR);
maxRight = std::max(maxRL, maxRR) + ;
} else {
maxDistRight = ;
maxRight = ;
} return std::max(maxLeft + maxRight, std::max(maxDistLeft, maxDistRight));
}
思路:有点类似于 数组最大子段和问题,部分和大于0,表示贡献值为0,可以相加起来
我们对二叉树进行 dfs,先算出 左右子树的和值 leftSum 和 rightSum, 如果 leftSum 或者 rightSum 大于0,则表示此结果对 后续结果是有利的
int maxSum = INT_MIN;
int dfs(BinTreeNode* root) {
if (root == NULL) return ;
int leftSum = dfs(root->left);
int rightSum = dfs(root->right);
int sum = root->val;
if (leftSum > ) sum += leftSum;
if (rightSum > ) sum += rightSum;
maxSum = std::max(maxSum, sum);
if (std::max(leftSum, rightSum) > ) {
return std::max(leftSum, rightSum) + root->val;
} else {
return root->val;
}
} int maxPathSum(BinTreeNode* root) {
if (root == NULL) return ;
dfs(root);
return maxSum;
}
4. 二叉树最低公共祖先
思路:先求取 根节点到两个结点的路径序列,然后在这两个路径中查找最后一个公共结点即可
扩展:如何求 两个结点之间的距离呢? 可以先分别求得 根节点到这两个结点的路径,然后 最低公共祖先结点到 结点A的距离 + 最低公共祖先结点到 结点B的距离
struct BinTreeNode {
BinTreeNode* left;
BinTreeNode* right;
int val;
BinTreeNode(int value) : left(NULL), right(NULL), val(value) { }
}; BinTreeNode* BuildBinTree(BinTreeNode* root, int value) {
if (root == NULL) {
root = new BinTreeNode(value);
} else if (value <= root->val) {
root->left = BuildBinTree(root->left, value);
} else {
root->right = BuildBinTree(root->right, value);
}
return root;
} // 二叉树中序 递归
void Inorder(BinTreeNode* root) {
if (root == NULL) return;
Inorder(root->left);
std::cout << root->val << "-->";
Inorder(root->right);
} // 二叉树中序 非递归 栈
void InorderStk(BinTreeNode* root) {
if (root == NULL) return;
std::stack<BinTreeNode*> stk;
while (root != NULL || !stk.empty()) {
while (root != NULL) {
stk.push(root);
root = root->left;
}
BinTreeNode* cur = stk.top();
stk.pop();
std::cout << cur->val << "-->";
root = cur->right;
}
} // 二叉树中序 非递归 非栈
void InorderMorris(BinTreeNode* root) {
if (root == NULL) return;
BinTreeNode* cur = root;
BinTreeNode* prev = NULL;
while (cur != NULL) {
if (cur->left == NULL) {
std::cout << cur->val << "-->";
prev = cur;
cur = cur->right;
} else {
BinTreeNode* node = cur->left;
while (node->right != NULL && node->right != cur) {
node = node->right;
}
if (node->right == NULL) {
node->right = cur;
cur = cur->left;
} else {
std::cout << cur->val << "-->";
prev = cur;
cur = cur->right;
node->right = NULL;
}
}
}
} // 按值查找结点
BinTreeNode* GetNode(BinTreeNode* root, int value) {
if (root == NULL) return NULL;
if (root->val == value) {
return root;
} else if (value < root->val) {
return GetNode(root->left, value);
} else {
return GetNode(root->right, value);
}
} // 获取从根节点到某节点的路径
bool GetNodePath(BinTreeNode* root, BinTreeNode* pNode, std::vector<BinTreeNode*>& path) {
if (root == NULL || pNode == NULL) return false;
bool found = false;
if (root == pNode) {
path.push_back(root);
found = true;
return found;
}
path.push_back(root);
found = GetNodePath(root->left, pNode, path);
if (!found) { // 左子树未找到,继续右子树找
found = GetNodePath(root->right, pNode, path);
}
if (!found) { // 左右子树均未找到,此时才pop
path.pop_back();
}
return found;
} // 两个结点的最低公共祖先
BinTreeNode* GetLastCommonParent(BinTreeNode* root, BinTreeNode* pNode1, BinTreeNode* pNode2) {
if (root == NULL || pNode1 == NULL || pNode2 == NULL) {
return NULL;
}
std::vector<BinTreeNode*> path1;
std::vector<BinTreeNode*> path2;
bool bFound1 = GetNodePath(root, pNode1, path1);
bool bFound2 = GetNodePath(root, pNode2, path2);
if (bFound1 == false || bFound2 == false) {
return NULL;
}
std::vector<BinTreeNode*>::iterator iter1 = path1.begin();
std::vector<BinTreeNode*>::iterator iter2 = path2.begin();
for (; iter1 != path2.end() && iter2 != path2.end(); ++iter1, ++iter2) {
if (*iter1 != *iter2) {
break;
}
}
--iter1;
return *iter1;
}