传送门
除了操作 \(3\) 都可以 \(bitset\)
现在要维护
\[C_i=\sum_{gcd(j,k)=i}A_jB_k\]
类比 \(FWT\),只要求出 \(A'_i=\sum_{i|d}A_d\)
就可以直接按位相乘了
求答案就是莫比乌斯反演,\(A_i=\sum_{i|d}\mu(\frac{d}{i})A'_i\)
把每个数字的 \(\mu\) 的 \(bitset\) 预处理出来,乘法就是 \(and\)
最后用 \(count\) 统计答案
# include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn(7005);
int mu[maxn], n, q, pr[maxn], tot;
bitset <maxn> bc[100005], bcm[7005], bcv[7005], ispr;
int main() {
int i, j, op, l, r, v;
mu[1] = 1;
for (i = 2; i <= 7000; ++i) {
if (!ispr[i]) pr[++tot] = i, mu[i] = -1;
for (j = 1; j <= tot && pr[j] * i <= 7000; ++j) {
ispr[pr[j] * i] = 1;
if (i % pr[j]) mu[i * pr[j]] = -mu[i];
else {
mu[i * pr[j]] = 0;
break;
}
}
}
for (i = 1; i <= 7000; ++i)
for (j = i; j <= 7000; j += i) {
bcv[j].set(i);
if (mu[j / i]) bcm[i].set(j);
}
scanf("%d%d", &n, &q);
for (i = 1; i <= q; ++i) {
scanf("%d%d%d", &op, &l, &r);
if (op == 1) bc[l] = bcv[r];
else if (op == 2) scanf("%d", &v), bc[l] = bc[r] ^ bc[v];
else if (op == 3) scanf("%d", &v), bc[l] = bc[r] & bc[v];
else putchar(((bc[l] & bcm[r]).count() & 1) + '0');
}
return 0;
}