题目:
Given a string s, partition s such that every substring of the partition is a palindrome.
Return the minimum cuts needed for a palindrome partitioning of s.
For example, given s = "aab"
,
Return 1
since the palindrome partitioning ["aa","b"]
could be produced using 1 cut.
题解:
这道题需要用动态规划做,如果用I的DFS的方法做会TLE。
首先设置dp变量 cuts[len+1]。cuts[i]表示从第i位置到第len位置(包含,即[i, len])的切割数(第len位置为空)。
初始时,是len-i。比如给的例子aab,cuts[0]=3,就是最坏情况每一个字符都得切割:a|a|b|' '。cuts[1] = 2, 即从i=1位置开始,a|b|' '。
cuts[2] = 1 b|' '。cuts[3]=0,即第len位置,为空字符,不需要切割。
上面的这个cuts数组是用来帮助算最小cuts的。
还需要一个dp二维数组matrixs[i][j]表示字符串[i,j]从第i个位置(包含)到第j个位置(包含) 是否是回文。
如何判断字符串[i,j]是不是回文?
1. matrixs[i+1][j-1]是回文且 s.charAt(i) == s.charAt(j)。
2. i==j(i,j是用一个字符)
3. j=i+1(i,j相邻)且s.charAt(i) == s.charAt(j)
当字符串[i,j]是回文后,说明从第i个位置到字符串第len位置的最小cut数可以被更新了,
那么就是从j+1位置开始到第len位置的最小cut数加上[i,j] cuts[i] = len - i;
|| (s.charAt(i) == s.charAt(j) && matrix[i+1][j-1]))
{
matrix[i][j] = cuts[i] = Math.min(cuts[i], cuts[j+1]+1);
}
}
}
min = cuts[0]-1;
}