- 作者: 负雪明烛
- id: fuxuemingzhu
- 个人博客:http://fuxuemingzhu.cn/
题目地址:https://leetcode-cn.com/problems/range-addition/
题目描述
Assume you have an array of length n
initialized with all 0’s and are given k
update operations.
Each operation is represented as a triplet: [startIndex, endIndex, inc]
which increments each element of subarray A[startIndex ... endIndex]
(startIndex
and endIndex
inclusive) with inc.
Return the modified array after all k
operations were executed.
Example:
Input: length = 5, updates = [[1,3,2],[2,4,3],[0,2,-2]]
Output: [-2,0,3,5,3]
Explanation:
Initial state:
[0,0,0,0,0]
After applying operation [1,3,2]:
[0,2,2,2,0]
After applying operation [2,4,3]:
[0,2,5,5,3]
After applying operation [0,2,-2]:
[-2,0,3,5,3]
题目大意
假设你有一个长度为 n 的数组,初始情况下所有的数字均为 0,你将会被给出 k个更新的操作。
其中,每个操作会被表示为一个三元组:[startIndex, endIndex, inc],你需要将子数组 A[startIndex … endIndex](包括 startIndex 和 endIndex)增加 inc。
请你返回 k 次操作后的数组。
解题方法
只修改区间起终点
我第一次做的时候,把[start,end]区间内的所有元素进行了遍历修改,会导致超时。
看了官方解答之后明白,哦,原来只用修改起始位置和结束位置就行了,让区间起点+=inc,区间终点-=inc,区间中间的部分暂时不用更新。最后从左到右再遍历一次,累计求和并修改每个位置的值。
总的时间复杂度是O(N + k),空间复杂度是O(1).
C++代码如下:
class Solution {
public:
vector<int> getModifiedArray(int length, vector<vector<int>>& updates) {
vector<int> res(length, 0);
for (auto& up : updates) {
int start = up[0], end = up[1], inc = up[2];
res[start] += inc;
if (end < length - 1)
res[end + 1] -= inc;
}
int cursum = 0;
for (int i = 0; i < length; ++i) {
cursum += res[i];
res[i] = cursum;
}
return res;
}
};
参考资料:https://leetcode-cn.com/problems/range-addition/solution/qu-jian-jia-fa-by-leetcode/
日期
2019 年 9 月 18 日 —— 今日又是九一八