实验6选第k小元素:特定分治策略

问题:

给出一个数组$a[n]$,求第$k$小元素是什么。

解析:

分治思想,将数组五个一组划分,并计算出每组数的中位数。然后把各组中位数的中位数找出。统计数组中小于中位数的个数$num$,有三种情况。

①    $num = k$,则中位数就是要查询的数。

②    $num > k$,则在小于中位数的集合中查询第$k$小。

③    $num < k$,则在大于中位数的集合中查询第$k – num$小。

设计(核心代码):

 1 void insertsort(int a[], int l, int r)//从小到大排序
 2 {
 3     int i, j, key;
 4     for (i = l + 1; i <= r; ++i)
 5     {
 6         key = a[i];
 7         for (j = i - 1; j >= l && key < a[j]; --j)
 8         {
 9             a[j + 1] = a[j];
10         }
11         a[j + 1] = key;
12     }
13 }
14 
15 int partition(int a[], int l, int r, int pivot)
16 {
17     int x, i = l - 1, j;
18     for (j = l; j < r; ++j)
19     {
20         if (a[j] == pivot)    swap(a[j], a[r]);
21     }
22     x = a[r];
23     for (j = l; j < r; ++j)
24     {
25         if (a[j] <= x)
26         {
27             ++i;
28             swap(a[i], a[j]);
29         }
30     }
31     swap(a[r], a[i + 1]);
32     return i + 1;
33 }
34 
35 int select(int a[], int l, int r, int k)
36 {
37     int group, i, left, right, mid;
38     int pivot, p, lnum;
39     if (r - l + 1 <= 5)
40     {
41         insertsort(a, l, r);
42         return a[l + k - 1];
43     }
44     group = (r - l + 1 + 5) / 5;
45     for (i = 0; i < group; ++i)
46     {
47         left = l + 5 * i;
48         right = (l + 5 * i + 4) > r ? r : l + 5 * i + 4;
49         mid = (left + right) / 2;
50         insertsort(a, left, right);
51         swap(a[l + i], a[mid]);
52     }
53     pivot = select(a, l, l + group - 1, (group + 1) / 2);
54     p = partition(a, l, r, pivot);
55     lnum = p - l;
56     if (k == lnum + 1)
57         return a[p];
58     else if (k <= lnum)
59         return select(a, l, p - 1, k);
60     else
61         return select(a, p + 1, r, k - lnum - 1);
62 }

分析:

复杂度:$O(n)$。

源码:

https://github.com/Big-Kelly/Algorithm

实验6选第k小元素:特定分治策略
  1 #include<bits/stdc++.h>
  2 #include <set>
  3 #include <map>
  4 #include <stack>
  5 #include <cmath>
  6 #include <queue>
  7 #include <cstdio>
  8 #include <string>
  9 #include <vector>
 10 #include <cstring>
 11 #include <iostream>
 12 #include <algorithm>
 13 
 14 #define ll long long
 15 #define pll pair<ll,ll>
 16 #define pii pair<int,int>
 17 #define bug printf("*********\n")
 18 #define FIN freopen("input.txt","r",stdin);
 19 #define FON freopen("output.txt","w+",stdout);
 20 #define IO ios::sync_with_stdio(false),cin.tie(0)
 21 #define ls root<<1
 22 #define rs root<<1|1
 23 #define Q(a) cout<<a<<endl
 24 
 25 using namespace std;
 26 const int inf = 2e9 + 7;
 27 const ll Inf = 1e18 + 7;
 28 const int maxn = 1e6 + 5;
 29 const int mod = 1e9 + 7;
 30 
 31 ll gcd(ll a, ll b)
 32 {
 33     return b ? gcd(b, a % b) : a;
 34 }
 35 
 36 ll lcm(ll a, ll b)
 37 {
 38     return a / gcd(a, b) * b;
 39 }
 40 
 41 ll read()
 42 {
 43     ll p = 0, sum = 0;
 44     char ch;
 45     ch = getchar();
 46     while (1)
 47     {
 48         if (ch == '-' || (ch >= '0' && ch <= '9'))
 49             break;
 50         ch = getchar();
 51     }
 52 
 53     if (ch == '-')
 54     {
 55         p = 1;
 56         ch = getchar();
 57     }
 58     while (ch >= '0' && ch <= '9')
 59     {
 60         sum = sum * 10 + ch - '0';
 61         ch = getchar();
 62     }
 63     return p ? -sum : sum;
 64 }
 65 
 66 void insertsort(int a[], int l, int r)//从小到大排序
 67 {
 68     int i, j, key;
 69     for (i = l + 1; i <= r; ++i)
 70     {
 71         key = a[i];
 72         for (j = i - 1; j >= l && key < a[j]; --j)
 73         {
 74             a[j + 1] = a[j];
 75         }
 76         a[j + 1] = key;
 77     }
 78 }
 79 
 80 int partition(int a[], int l, int r, int pivot)
 81 {
 82     int x, i = l - 1, j;
 83     for (j = l; j < r; ++j)
 84     {
 85         if (a[j] == pivot)    swap(a[j], a[r]);
 86     }
 87     x = a[r];
 88     for (j = l; j < r; ++j)
 89     {
 90         if (a[j] <= x)
 91         {
 92             ++i;
 93             swap(a[i], a[j]);
 94         }
 95     }
 96     swap(a[r], a[i + 1]);
 97     return i + 1;
 98 }
 99 
100 int select(int a[], int l, int r, int k)
101 {
102     int group, i, left, right, mid;
103     int pivot, p, lnum;
104     if (r - l + 1 <= 5)
105     {
106         insertsort(a, l, r);
107         return a[l + k - 1];
108     }
109     group = (r - l + 1 + 5) / 5;
110     for (i = 0; i < group; ++i)
111     {
112         left = l + 5 * i;
113         right = (l + 5 * i + 4) > r ? r : l + 5 * i + 4;
114         mid = (left + right) / 2;
115         insertsort(a, left, right);
116         swap(a[l + i], a[mid]);
117     }
118     pivot = select(a, l, l + group - 1, (group + 1) / 2);
119     p = partition(a, l, r, pivot);
120     lnum = p - l;
121     if (k == lnum + 1)
122         return a[p];
123     else if (k <= lnum)
124         return select(a, l, p - 1, k);
125     else
126         return select(a, p + 1, r, k - lnum - 1);
127 }
128 
129 int a[maxn];
130 int n, k;
131 
132 int main()
133 {
134     scanf("%d %d", &n, &k);
135     for (int i = 1; i <= n; ++i)    scanf("%d", &a[i]);
136     printf("%d\n", select(a, 1, n, k));
137 }
View Code

 

上一篇:Unity中Rect类型详解


下一篇:golang 快速排序