Mapreduce的combiner

每一个map都可能会产生大量的本地输出,Combiner的作用就是对map端的输出先做一次合并,以减少在map和reduce节点之间的数据传输量,以提高网络IO性能,是MapReduce的一种优化手段之一。

combiner是MR程序中Mapper和Reducer之外的一种组件
combiner组件的父类就是Reducer
combiner和reducer的区别在于运行的位置:
Combiner是在每一个maptask所在的节点运行
Reducer是接收全局所有Mapper的输出结果;
combiner的意义就是对每一个maptask的输出进行局部汇总,以减小网络传输量
具体实现步骤:
1、自定义一个combiner继承Reducer,重写reduce方法
2、在job中设置: job.setCombinerClass(CustomCombiner.class)
combiner能够应用的前提是不能影响最终的业务逻辑,而且,combiner的输出kv应该跟reducer的输入kv类型要对应起来

上一篇:Mapreduce的combiner


下一篇:【大数据Hadoop系列】分布式计算框架——MapReduce