用Python去除背景,得到有效的图像
此目的是为了放入深度学习计算中来减少计算量,同时突出特征,原图像为下图,命名为1.jpg,在此去除白色背景,黑色背景同理
需要对原图像进行的处理是去掉白色背景,抠出有效的参与计算的图形的大小即下图
对此有两个思路:
用掩模法得到有效部分,其次去掉空白,但太繁琐喽,并且一万多张图片,其不弄到天荒地老(截图也是哦)
对图像进行处理,即先做numpy变化,后反变换,将255-原图像,此时得到的图像就是
在此计算图像的横轴相加为0,纵轴相加为0,删去和为0的列和行得到的numpy矩阵,用255减去numpy矩阵得到的图像就是所求有效图像。(在此我没能实现三通道的图像,只能做出灰度图的图像)程序如下:
from PIL import Image
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import scipy.misc
img = Image.open('1.jpg')
e,g=img.size
img1=img.convert('L')
img1=np.array(img1, dtype='float32')
arr=255-img1
arr1 = arr.sum(axis=0)#每一列求和
arr2 = arr.sum(axis=1)#每一行求和
df=pd.DataFrame(arr)#把像素点转化为dataframe
df.insert(len(df.columns),len(df.columns),arr2)#最后一列插入每一行的和
df1=pd.concat([df,(pd.DataFrame(df.sum()).T)])#最后一行插入每一列的和
df2=df1[df1[e]>0]#根据最后一列把大于0的行筛选出来
#根据最后一行,把等于0的列删除掉
for c in df2.columns:
if df2[c].sum() == 0 :
df2.drop(columns = [c],inplace = True)
df2.drop(columns=[e],inplace = True)#删除最后一列
df3 = df2.head((df2.shape[0])-1)#删除最后一行
a=255-df3
#df3.values#dataframe转化为numpy
plt.imshow(a)
scipy.misc.toimage(df3.values).save('C:/Users/Administrator.SKY-20180518VHY/Desktop/2.jpg')#保存图像
最终得到的图像为