Pandigital prime
Problem 41
We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly once. For example, 2143 is a 4-digit pandigital and is also prime.
What is the largest n-digit pandigital prime that exists?
Answer:
7652413
Completed on Thu, 30 Jul 2015, 08:32
Go to the thread for problem 41 in the forum.
首先发现3k和3k-1位的ppandigital肯定能被3整除。所以就剩下1,4,7,10。13。。。推測题意应该是9以内的所以就试试7咯,代码是前面代码扩展,就出结果了
http://blog.csdn.net/zhangzhengyi03539/article/details/43501225
http://blog.csdn.net/zhangzhengyi03539/article/details/47057049
__author__ = 'zhengyi'
import math
from functools import reduce
def IsPrime(x):
if x==1:
return False
k=int(math.sqrt(x))+1
for i in range(2,k):
if x%i==0:
return False
return True
def reducefunc(x,y):
return 10*x+y
def func1(x):
i=1
val=1
while val<x:
i+=1
val*=i
if val==x:
return (1,i,0)
else:
step=val//i
k=x//step
return (k,i-1,x%(k*step))
def func2(x):
lst=[]
result=func1(x)
while result[2]!=0:
lst.append(result[0:2])
result=func1(result[2])
lst.append(result[0:2])
return lst
def func3(x,clst):
result=[]
count=len(clst)
lst=func2(x)
length=len(lst)
for i in range(0,length):
if i<length-1:
delta=lst[i][0]
position=lst[i][1]+1
while count>position:
result.append(clst[-count])
del clst[-count]
count-=1
result.append(clst[-position+delta])
del clst[-position+delta]
count-=1
else:
delta=lst[i][0]-1
position=lst[i][1]+1
while count>position:
result.append(clst[-count])
del clst[-count]
count-=1
result.append(clst[-position+delta])
del clst[-position+delta]
count-=1
while count>0:
result.append(clst[-1])
del clst[-1]
count-=1
return result
charlist=[i for i in range(7,0,-1)]
k=0
while True:
k+=1
temp=func3(k,charlist.copy())
data=reduce(reducefunc,temp)
if IsPrime(data):
print(data)
break
print("Get it")