【强化学习】多臂*——E_greedy、UCB、Gradient Bandit 算法 代码实现

多臂*

import numpy as np
import matplotlib.pyplot as plt

class E_greedy:
    def __init__(self,arm_num=10,epsilon=0.5):
        self.arm_num = arm_num
        self.epsilon = epsilon
        self.arms = np.random.uniform(0, 1, self.arm_num)
        self.Q = np.zeros(arm_num)
        self.NA = np.zeros(arm_num)
        self.T = 100000
        self.R = 0
        self.R_list = []
        self.HAP = np.zeros(arm_num)
        self.HA = np.zeros(arm_num)
        self.R_ = np.zeros(arm_num)

    def reset(self):
        self.Q = np.zeros(self.arm_num)
        self.NA = np.zeros(self.arm_num)
        self.R_list = []
        self.R = 0

    def get_reward(self,arm_index):
        return self.arms[arm_index] + np.random.normal(0, 1)

    def update_Q_NA(self,arm_index,reward):
        self.NA[arm_index] += 1
        self.Q[arm_index] += 1/self.NA[arm_index]*(reward-self.Q[arm_index])

    def update_NA(self,arm_index):
        self.NA[arm_index] += 1

    def e_greedy(self,epsilon=None):
        if epsilon:
            self.epsilon = epsilon
        for iter in range(1,self.T+1):
            if np.random.random() > self.epsilon:
                if iter == 1:
                    arm_index = np.random.randint(0,self.arm_num)
                else:
                    arm_index = np.argmax(self.Q)
            else:
                arm_index = np.random.randint(0, self.arm_num)
            reward = self.get_reward(arm_index)
            self.R += 1/iter*(reward-self.R)
            self.R_list.append((iter,self.R))
            self.update_Q_NA(arm_index,reward)

    def ucb(self,c):
        for iter in range(1,self.T+1):
            A_list = self.Q + c*(np.sqrt(np.log(iter)/(self.NA+1e-8)))
            arm_index = np.argmax(A_list)
            reward = self.get_reward(arm_index)
            self.R += 1/iter*(reward-self.R)
            self.R_list.append((iter,self.R))
            self.update_Q_NA(arm_index,reward)

    def get_HA(self):
        hae = np.array([np.e**x for x in self.HA])
        sum = np.sum(hae)
        self.HAP = hae/sum

    def gradient(self,a):
        for iter in range(1,self.T+1):
            self.get_HA()
            arm_index = np.random.choice(list(range(self.arm_num)),p=self.HAP)
            reward = self.get_reward(arm_index)
            self.update_NA(arm_index)
            self.R_[arm_index] += 1/self.NA[arm_index] * (reward - self.R_[arm_index])
            self.R += 1/iter*(reward-self.R)
            self.R_list.append((iter,self.R))
            ha_temp = self.HA[arm_index] + a*(reward-self.R_[arm_index])*(1-self.HAP[arm_index])
            self.HA -= a * (reward - self.R_[arm_index]) * self.HAP
            self.HA[arm_index] = ha_temp

    def plot_R(self,c):
        plt.plot([k[0] for k in self.R_list[100:]], [k[1] for k in self.R_list[100:]], c=c)
        plt.plot([k[0] for k in self.R_list[100:]], [np.max(self.arms) for k in self.R_list[100:]],c='r')

def main():
    e = E_greedy()
    e.ucb(2)
    e.plot_R(c='g')
    e.reset()
    e.e_greedy(0.1)
    e.plot_R(c='b')
    e.reset()
    e.gradient(0.25)
    e.plot_R(c='k')
    plt.show()

if __name__ == '__main__':
    main()

【强化学习】多臂*——E_greedy、UCB、Gradient Bandit 算法 代码实现

上一篇:关于指针的学习


下一篇:Steam被曝零日漏洞,超1亿用户受到影响