p20_custom
import tensorflow as tf import numpy as np SEED = 23455 COST = 1 PROFIT = 99 rdm = np.random.RandomState(SEED) x = rdm.rand(32, 2) y_ = [[x1 + x2 + (rdm.rand() / 10.0 - 0.05)] for (x1, x2) in x] # 生成噪声[0,1)/10=[0,0.1); [0,0.1)-0.05=[-0.05,0.05) x = tf.cast(x, dtype=tf.float32) w1 = tf.Variable(tf.random.normal([2, 1], stddev=1, seed=1)) epoch = 10000 lr = 0.002 for epoch in range(epoch): with tf.GradientTape() as tape: y = tf.matmul(x, w1) loss = tf.reduce_sum(tf.where(tf.greater(y, y_), (y - y_) * COST, (y_ - y) * PROFIT)) grads = tape.gradient(loss, w1) w1.assign_sub(lr * grads) if epoch % 500 == 0: print("After %d training steps,w1 is " % (epoch)) print(w1.numpy(), "\n") print("Final w1 is: ", w1.numpy()) # 自定义损失函数 # 酸奶成本1元, 酸奶利润99元 # 成本很低,利润很高,人们希望多预测些,生成模型系数大于1,往多了预测
p29_regularizationfree
# 导入所需模块 import tensorflow as tf from matplotlib import pyplot as plt import numpy as np import pandas as pd # 读入数据/标签 生成x_train y_train df = pd.read_csv('dot.csv') x_data = np.array(df[['x1', 'x2']]) y_data = np.array(df['y_c']) x_train = np.vstack(x_data).reshape(-1, 2) y_train = np.vstack(y_data).reshape(-1, 1) Y_c = [['red' if y else 'blue'] for y in y_train] # 转换x的数据类型,否则后面矩阵相乘时会因数据类型问题报错 x_train = tf.cast(x_train, tf.float32) y_train = tf.cast(y_train, tf.float32) # from_tensor_slices函数切分传入的张量的第一个维度,生成相应的数据集,使输入特征和标签值一一对应 train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32) # 生成神经网络的参数,输入层为2个神经元,隐藏层为11个神经元,1层隐藏层,输出层为1个神经元 # 用tf.Variable()保证参数可训练 w1 = tf.Variable(tf.random.normal([2, 11]), dtype=tf.float32) b1 = tf.Variable(tf.constant(0.01, shape=[11])) w2 = tf.Variable(tf.random.normal([11, 1]), dtype=tf.float32) b2 = tf.Variable(tf.constant(0.01, shape=[1])) lr = 0.005 # 学习率 epoch = 800 # 循环轮数 # 训练部分 for epoch in range(epoch): for step, (x_train, y_train) in enumerate(train_db): with tf.GradientTape() as tape: # 记录梯度信息 h1 = tf.matmul(x_train, w1) + b1 # 记录神经网络乘加运算 h1 = tf.nn.relu(h1) y = tf.matmul(h1, w2) + b2 # 采用均方误差损失函数mse = mean(sum(y-out)^2) loss = tf.reduce_mean(tf.square(y_train - y)) # 计算loss对各个参数的梯度 variables = [w1, b1, w2, b2] grads = tape.gradient(loss, variables) # 实现梯度更新 # w1 = w1 - lr * w1_grad tape.gradient是自动求导结果与[w1, b1, w2, b2] 索引为0,1,2,3 w1.assign_sub(lr * grads[0]) b1.assign_sub(lr * grads[1]) w2.assign_sub(lr * grads[2]) b2.assign_sub(lr * grads[3]) # 每20个epoch,打印loss信息 if epoch % 20 == 0: print('epoch:', epoch, 'loss:', float(loss)) # 预测部分 print("*******predict*******") # xx在-3到3之间以步长为0.01,yy在-3到3之间以步长0.01,生成间隔数值点 xx, yy = np.mgrid[-3:3:.1, -3:3:.1] # 将xx , yy拉直,并合并配对为二维张量,生成二维坐标点 grid = np.c_[xx.ravel(), yy.ravel()] grid = tf.cast(grid, tf.float32) # 将网格坐标点喂入神经网络,进行预测,probs为输出 probs = [] for x_test in grid: # 使用训练好的参数进行预测 h1 = tf.matmul([x_test], w1) + b1 h1 = tf.nn.relu(h1) y = tf.matmul(h1, w2) + b2 # y为预测结果 probs.append(y) # 取第0列给x1,取第1列给x2 x1 = x_data[:, 0] x2 = x_data[:, 1] # probs的shape调整成xx的样子 probs = np.array(probs).reshape(xx.shape) plt.scatter(x1, x2, color=np.squeeze(Y_c)) # squeeze去掉纬度是1的纬度,相当于去掉[['red'],[''blue]],内层括号变为['red','blue'] # 把坐标xx yy和对应的值probs放入contour函数,给probs值为0.5的所有点上色 plt.show()后 显示的是红蓝点的分界线 plt.contour(xx, yy, probs, levels=[.5]) plt.show() # 读入红蓝点,画出分割线,不包含正则化 # 不清楚的数据,建议print出来查看
p29_regularizationcontain.py
# 导入所需模块 import tensorflow as tf from matplotlib import pyplot as plt import numpy as np import pandas as pd # 读入数据/标签 生成x_train y_train df = pd.read_csv('dot.csv') x_data = np.array(df[['x1', 'x2']]) y_data = np.array(df['y_c']) x_train = x_data y_train = y_data.reshape(-1, 1) Y_c = [['red' if y else 'blue'] for y in y_train] # 转换x的数据类型,否则后面矩阵相乘时会因数据类型问题报错 x_train = tf.cast(x_train, tf.float32) y_train = tf.cast(y_train, tf.float32) # from_tensor_slices函数切分传入的张量的第一个维度,生成相应的数据集,使输入特征和标签值一一对应 train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32) # 生成神经网络的参数,输入层为4个神经元,隐藏层为32个神经元,2层隐藏层,输出层为3个神经元 # 用tf.Variable()保证参数可训练 w1 = tf.Variable(tf.random.normal([2, 11]), dtype=tf.float32) b1 = tf.Variable(tf.constant(0.01, shape=[11])) w2 = tf.Variable(tf.random.normal([11, 1]), dtype=tf.float32) b2 = tf.Variable(tf.constant(0.01, shape=[1])) lr = 0.005 # 学习率为 epoch = 800 # 循环轮数 # 训练部分 for epoch in range(epoch): for step, (x_train, y_train) in enumerate(train_db): with tf.GradientTape() as tape: # 记录梯度信息 h1 = tf.matmul(x_train, w1) + b1 # 记录神经网络乘加运算 h1 = tf.nn.relu(h1) y = tf.matmul(h1, w2) + b2 # 采用均方误差损失函数mse = mean(sum(y-out)^2) loss_mse = tf.reduce_mean(tf.square(y_train - y)) # 添加l2正则化 loss_regularization = [] # tf.nn.l2_loss(w)=sum(w ** 2) / 2 loss_regularization.append(tf.nn.l2_loss(w1)) loss_regularization.append(tf.nn.l2_loss(w2)) # 求和 # 例:x=tf.constant(([1,1,1],[1,1,1])) # tf.reduce_sum(x) # >>>6 loss_regularization = tf.reduce_sum(loss_regularization) loss = loss_mse + 0.03 * loss_regularization # REGULARIZER = 0.03 # 计算loss对各个参数的梯度 variables = [w1, b1, w2, b2] grads = tape.gradient(loss, variables) # 实现梯度更新 # w1 = w1 - lr * w1_grad w1.assign_sub(lr * grads[0]) b1.assign_sub(lr * grads[1]) w2.assign_sub(lr * grads[2]) b2.assign_sub(lr * grads[3]) # 每200个epoch,打印loss信息 if epoch % 20 == 0: print('epoch:', epoch, 'loss:', float(loss)) # 预测部分 print("*******predict*******") # xx在-3到3之间以步长为0.01,yy在-3到3之间以步长0.01,生成间隔数值点 xx, yy = np.mgrid[-3:3:.1, -3:3:.1] # 将xx, yy拉直,并合并配对为二维张量,生成二维坐标点 grid = np.c_[xx.ravel(), yy.ravel()] grid = tf.cast(grid, tf.float32) # 将网格坐标点喂入神经网络,进行预测,probs为输出 probs = [] for x_predict in grid: # 使用训练好的参数进行预测 h1 = tf.matmul([x_predict], w1) + b1 h1 = tf.nn.relu(h1) y = tf.matmul(h1, w2) + b2 # y为预测结果 probs.append(y) # 取第0列给x1,取第1列给x2 x1 = x_data[:, 0] x2 = x_data[:, 1] # probs的shape调整成xx的样子 probs = np.array(probs).reshape(xx.shape) plt.scatter(x1, x2, color=np.squeeze(Y_c)) # 把坐标xx yy和对应的值probs放入contour函数,给probs值为0.5的所有点上色 plt.show()后 显示的是红蓝点的分界线 plt.contour(xx, yy, probs, levels=[.5]) plt.show() # 读入红蓝点,画出分割线,包含正则化 # 不清楚的数据,建议print出来查看
p32_sgd
# 利用鸢尾花数据集,实现前向传播、反向传播,可视化loss曲线 # 导入所需模块 import tensorflow as tf from sklearn import datasets from matplotlib import pyplot as plt import numpy as np import time ##1## # 导入数据,分别为输入特征和标签 x_data = datasets.load_iris().data y_data = datasets.load_iris().target # 随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率) # seed: 随机数种子,是一个整数,当设置之后,每次生成的随机数都一样(为方便教学,以保每位同学结果一致) np.random.seed(116) # 使用相同的seed,保证输入特征和标签一一对应 np.random.shuffle(x_data) np.random.seed(116) np.random.shuffle(y_data) tf.random.set_seed(116) # 将打乱后的数据集分割为训练集和测试集,训练集为前120行,测试集为后30行 x_train = x_data[:-30] y_train = y_data[:-30] x_test = x_data[-30:] y_test = y_data[-30:] # 转换x的数据类型,否则后面矩阵相乘时会因数据类型不一致报错 x_train = tf.cast(x_train, tf.float32) x_test = tf.cast(x_test, tf.float32) # from_tensor_slices函数使输入特征和标签值一一对应。(把数据集分批次,每个批次batch组数据) train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32) test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32) # 生成神经网络的参数,4个输入特征故,输入层为4个输入节点;因为3分类,故输出层为3个神经元 # 用tf.Variable()标记参数可训练 # 使用seed使每次生成的随机数相同(方便教学,使大家结果都一致,在现实使用时不写seed) w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1)) b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1)) lr = 0.1 # 学习率为0.1 train_loss_results = [] # 将每轮的loss记录在此列表中,为后续画loss曲线提供数据 test_acc = [] # 将每轮的acc记录在此列表中,为后续画acc曲线提供数据 epoch = 500 # 循环500轮 loss_all = 0 # 每轮分4个step,loss_all记录四个step生成的4个loss的和 # 训练部分 now_time = time.time() ##2## for epoch in range(epoch): # 数据集级别的循环,每个epoch循环一次数据集 for step, (x_train, y_train) in enumerate(train_db): # batch级别的循环 ,每个step循环一个batch with tf.GradientTape() as tape: # with结构记录梯度信息 y = tf.matmul(x_train, w1) + b1 # 神经网络乘加运算 y = tf.nn.softmax(y) # 使输出y符合概率分布(此操作后与独热码同量级,可相减求loss) y_ = tf.one_hot(y_train, depth=3) # 将标签值转换为独热码格式,方便计算loss和accuracy loss = tf.reduce_mean(tf.square(y_ - y)) # 采用均方误差损失函数mse = mean(sum(y-out)^2) loss_all += loss.numpy() # 将每个step计算出的loss累加,为后续求loss平均值提供数据,这样计算的loss更准确 # 计算loss对各个参数的梯度 grads = tape.gradient(loss, [w1, b1]) # 实现梯度更新 w1 = w1 - lr * w1_grad b = b - lr * b_grad w1.assign_sub(lr * grads[0]) # 参数w1自更新 b1.assign_sub(lr * grads[1]) # 参数b自更新 # 每个epoch,打印loss信息 print("Epoch {}, loss: {}".format(epoch, loss_all / 4)) train_loss_results.append(loss_all / 4) # 将4个step的loss求平均记录在此变量中 loss_all = 0 # loss_all归零,为记录下一个epoch的loss做准备 # 测试部分 # total_correct为预测对的样本个数, total_number为测试的总样本数,将这两个变量都初始化为0 total_correct, total_number = 0, 0 for x_test, y_test in test_db: # 使用更新后的参数进行预测 y = tf.matmul(x_test, w1) + b1 y = tf.nn.softmax(y) pred = tf.argmax(y, axis=1) # 返回y中最大值的索引,即预测的分类 # 将pred转换为y_test的数据类型 pred = tf.cast(pred, dtype=y_test.dtype) # 若分类正确,则correct=1,否则为0,将bool型的结果转换为int型 correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32) # 将每个batch的correct数加起来 correct = tf.reduce_sum(correct) # 将所有batch中的correct数加起来 total_correct += int(correct) # total_number为测试的总样本数,也就是x_test的行数,shape[0]返回变量的行数 total_number += x_test.shape[0] # 总的准确率等于total_correct/total_number acc = total_correct / total_number test_acc.append(acc) print("Test_acc:", acc) print("--------------------------") total_time = time.time() - now_time ##3## print("total_time", total_time) ##4## # 绘制 loss 曲线 plt.title('Loss Function Curve') # 图片标题 plt.xlabel('Epoch') # x轴变量名称 plt.ylabel('Loss') # y轴变量名称 plt.plot(train_loss_results, label="$Loss$") # 逐点画出trian_loss_results值并连线,连线图标是Loss plt.legend() # 画出曲线图标 plt.show() # 画出图像 # 绘制 Accuracy 曲线 plt.title('Acc Curve') # 图片标题 plt.xlabel('Epoch') # x轴变量名称 plt.ylabel('Acc') # y轴变量名称 plt.plot(test_acc, label="$Accuracy$") # 逐点画出test_acc值并连线,连线图标是Accuracy plt.legend() plt.show() # 本文件较 class1\p45_iris.py 仅添加四处时间记录 用 ##n## 标识 # 请将loss曲线、ACC曲线、total_time记录到 class2\优化器对比.docx 对比各优化器收敛情况
p34_sgdm
# 利用鸢尾花数据集,实现前向传播、反向传播,可视化loss曲线 # 导入所需模块 import tensorflow as tf from sklearn import datasets from matplotlib import pyplot as plt import numpy as np import time ##1## # 导入数据,分别为输入特征和标签 x_data = datasets.load_iris().data y_data = datasets.load_iris().target # 随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率) # seed: 随机数种子,是一个整数,当设置之后,每次生成的随机数都一样(为方便教学,以保每位同学结果一致) np.random.seed(116) # 使用相同的seed,保证输入特征和标签一一对应 np.random.shuffle(x_data) np.random.seed(116) np.random.shuffle(y_data) tf.random.set_seed(116) # 将打乱后的数据集分割为训练集和测试集,训练集为前120行,测试集为后30行 x_train = x_data[:-30] y_train = y_data[:-30] x_test = x_data[-30:] y_test = y_data[-30:] # 转换x的数据类型,否则后面矩阵相乘时会因数据类型不一致报错 x_train = tf.cast(x_train, tf.float32) x_test = tf.cast(x_test, tf.float32) # from_tensor_slices函数使输入特征和标签值一一对应。(把数据集分批次,每个批次batch组数据) train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32) test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32) # 生成神经网络的参数,4个输入特征故,输入层为4个输入节点;因为3分类,故输出层为3个神经元 # 用tf.Variable()标记参数可训练 # 使用seed使每次生成的随机数相同(方便教学,使大家结果都一致,在现实使用时不写seed) w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1)) b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1)) lr = 0.1 # 学习率为0.1 train_loss_results = [] # 将每轮的loss记录在此列表中,为后续画loss曲线提供数据 test_acc = [] # 将每轮的acc记录在此列表中,为后续画acc曲线提供数据 epoch = 500 # 循环500轮 loss_all = 0 # 每轮分4个step,loss_all记录四个step生成的4个loss的和 ########################################################################## m_w, m_b = 0, 0 beta = 0.9 ########################################################################## # 训练部分 now_time = time.time() ##2## for epoch in range(epoch): # 数据集级别的循环,每个epoch循环一次数据集 for step, (x_train, y_train) in enumerate(train_db): # batch级别的循环 ,每个step循环一个batch with tf.GradientTape() as tape: # with结构记录梯度信息 y = tf.matmul(x_train, w1) + b1 # 神经网络乘加运算 y = tf.nn.softmax(y) # 使输出y符合概率分布(此操作后与独热码同量级,可相减求loss) y_ = tf.one_hot(y_train, depth=3) # 将标签值转换为独热码格式,方便计算loss和accuracy loss = tf.reduce_mean(tf.square(y_ - y)) # 采用均方误差损失函数mse = mean(sum(y-out)^2) loss_all += loss.numpy() # 将每个step计算出的loss累加,为后续求loss平均值提供数据,这样计算的loss更准确 # 计算loss对各个参数的梯度 grads = tape.gradient(loss, [w1, b1]) ########################################################################## # sgd-momentun m_w = beta * m_w + (1 - beta) * grads[0] m_b = beta * m_b + (1 - beta) * grads[1] w1.assign_sub(lr * m_w) b1.assign_sub(lr * m_b) ########################################################################## # 每个epoch,打印loss信息 print("Epoch {}, loss: {}".format(epoch, loss_all / 4)) train_loss_results.append(loss_all / 4) # 将4个step的loss求平均记录在此变量中 loss_all = 0 # loss_all归零,为记录下一个epoch的loss做准备 # 测试部分 # total_correct为预测对的样本个数, total_number为测试的总样本数,将这两个变量都初始化为0 total_correct, total_number = 0, 0 for x_test, y_test in test_db: # 使用更新后的参数进行预测 y = tf.matmul(x_test, w1) + b1 y = tf.nn.softmax(y) pred = tf.argmax(y, axis=1) # 返回y中最大值的索引,即预测的分类 # 将pred转换为y_test的数据类型 pred = tf.cast(pred, dtype=y_test.dtype) # 若分类正确,则correct=1,否则为0,将bool型的结果转换为int型 correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32) # 将每个batch的correct数加起来 correct = tf.reduce_sum(correct) # 将所有batch中的correct数加起来 total_correct += int(correct) # total_number为测试的总样本数,也就是x_test的行数,shape[0]返回变量的行数 total_number += x_test.shape[0] # 总的准确率等于total_correct/total_number acc = total_correct / total_number test_acc.append(acc) print("Test_acc:", acc) print("--------------------------") total_time = time.time() - now_time ##3## print("total_time", total_time) ##4## # 绘制 loss 曲线 plt.title('Loss Function Curve') # 图片标题 plt.xlabel('Epoch') # x轴变量名称 plt.ylabel('Loss') # y轴变量名称 plt.plot(train_loss_results, label="$Loss$") # 逐点画出trian_loss_results值并连线,连线图标是Loss plt.legend() # 画出曲线图标 plt.show() # 画出图像 # 绘制 Accuracy 曲线 plt.title('Acc Curve') # 图片标题 plt.xlabel('Epoch') # x轴变量名称 plt.ylabel('Acc') # y轴变量名称 plt.plot(test_acc, label="$Accuracy$") # 逐点画出test_acc值并连线,连线图标是Accuracy plt.legend() plt.show() # 请将loss曲线、ACC曲线、total_time记录到 class2\优化器对比.docx 对比各优化器收敛情况
p36_adagrad.py
# 利用鸢尾花数据集,实现前向传播、反向传播,可视化loss曲线 # 导入所需模块 import tensorflow as tf from sklearn import datasets from matplotlib import pyplot as plt import numpy as np import time ##1## # 导入数据,分别为输入特征和标签 x_data = datasets.load_iris().data y_data = datasets.load_iris().target # 随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率) # seed: 随机数种子,是一个整数,当设置之后,每次生成的随机数都一样(为方便教学,以保每位同学结果一致) np.random.seed(116) # 使用相同的seed,保证输入特征和标签一一对应 np.random.shuffle(x_data) np.random.seed(116) np.random.shuffle(y_data) tf.random.set_seed(116) # 将打乱后的数据集分割为训练集和测试集,训练集为前120行,测试集为后30行 x_train = x_data[:-30] y_train = y_data[:-30] x_test = x_data[-30:] y_test = y_data[-30:] # 转换x的数据类型,否则后面矩阵相乘时会因数据类型不一致报错 x_train = tf.cast(x_train, tf.float32) x_test = tf.cast(x_test, tf.float32) # from_tensor_slices函数使输入特征和标签值一一对应。(把数据集分批次,每个批次batch组数据) train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32) test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32) # 生成神经网络的参数,4个输入特征故,输入层为4个输入节点;因为3分类,故输出层为3个神经元 # 用tf.Variable()标记参数可训练 # 使用seed使每次生成的随机数相同(方便教学,使大家结果都一致,在现实使用时不写seed) w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1)) b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1)) lr = 0.1 # 学习率为0.1 train_loss_results = [] # 将每轮的loss记录在此列表中,为后续画loss曲线提供数据 test_acc = [] # 将每轮的acc记录在此列表中,为后续画acc曲线提供数据 epoch = 500 # 循环500轮 loss_all = 0 # 每轮分4个step,loss_all记录四个step生成的4个loss的和 ########################################################################## v_w, v_b = 0, 0 ########################################################################## # 训练部分 now_time = time.time() ##2## for epoch in range(epoch): # 数据集级别的循环,每个epoch循环一次数据集 for step, (x_train, y_train) in enumerate(train_db): # batch级别的循环 ,每个step循环一个batch with tf.GradientTape() as tape: # with结构记录梯度信息 y = tf.matmul(x_train, w1) + b1 # 神经网络乘加运算 y = tf.nn.softmax(y) # 使输出y符合概率分布(此操作后与独热码同量级,可相减求loss) y_ = tf.one_hot(y_train, depth=3) # 将标签值转换为独热码格式,方便计算loss和accuracy loss = tf.reduce_mean(tf.square(y_ - y)) # 采用均方误差损失函数mse = mean(sum(y-out)^2) loss_all += loss.numpy() # 将每个step计算出的loss累加,为后续求loss平均值提供数据,这样计算的loss更准确 # 计算loss对各个参数的梯度 grads = tape.gradient(loss, [w1, b1]) ########################################################################## # adagrad v_w += tf.square(grads[0]) v_b += tf.square(grads[1]) w1.assign_sub(lr * grads[0] / tf.sqrt(v_w)) b1.assign_sub(lr * grads[1] / tf.sqrt(v_b)) ########################################################################## # 每个epoch,打印loss信息 print("Epoch {}, loss: {}".format(epoch, loss_all / 4)) train_loss_results.append(loss_all / 4) # 将4个step的loss求平均记录在此变量中 loss_all = 0 # loss_all归零,为记录下一个epoch的loss做准备 # 测试部分 # total_correct为预测对的样本个数, total_number为测试的总样本数,将这两个变量都初始化为0 total_correct, total_number = 0, 0 for x_test, y_test in test_db: # 使用更新后的参数进行预测 y = tf.matmul(x_test, w1) + b1 y = tf.nn.softmax(y) pred = tf.argmax(y, axis=1) # 返回y中最大值的索引,即预测的分类 # 将pred转换为y_test的数据类型 pred = tf.cast(pred, dtype=y_test.dtype) # 若分类正确,则correct=1,否则为0,将bool型的结果转换为int型 correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32) # 将每个batch的correct数加起来 correct = tf.reduce_sum(correct) # 将所有batch中的correct数加起来 total_correct += int(correct) # total_number为测试的总样本数,也就是x_test的行数,shape[0]返回变量的行数 total_number += x_test.shape[0] # 总的准确率等于total_correct/total_number acc = total_correct / total_number test_acc.append(acc) print("Test_acc:", acc) print("--------------------------") total_time = time.time() - now_time ##3## print("total_time", total_time) ##4## # 绘制 loss 曲线 plt.title('Loss Function Curve') # 图片标题 plt.xlabel('Epoch') # x轴变量名称 plt.ylabel('Loss') # y轴变量名称 plt.plot(train_loss_results, label="$Loss$") # 逐点画出trian_loss_results值并连线,连线图标是Loss plt.legend() # 画出曲线图标 plt.show() # 画出图像 # 绘制 Accuracy 曲线 plt.title('Acc Curve') # 图片标题 plt.xlabel('Epoch') # x轴变量名称 plt.ylabel('Acc') # y轴变量名称 plt.plot(test_acc, label="$Accuracy$") # 逐点画出test_acc值并连线,连线图标是Accuracy plt.legend() plt.show() # 请将loss曲线、ACC曲线、total_time记录到 class2\优化器对比.docx 对比各优化器收敛情况
rmsprop
# 利用鸢尾花数据集,实现前向传播、反向传播,可视化loss曲线 # 导入所需模块 import tensorflow as tf from sklearn import datasets from matplotlib import pyplot as plt import numpy as np import time ##1## # 导入数据,分别为输入特征和标签 x_data = datasets.load_iris().data y_data = datasets.load_iris().target # 随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率) # seed: 随机数种子,是一个整数,当设置之后,每次生成的随机数都一样(为方便教学,以保每位同学结果一致) np.random.seed(116) # 使用相同的seed,保证输入特征和标签一一对应 np.random.shuffle(x_data) np.random.seed(116) np.random.shuffle(y_data) tf.random.set_seed(116) # 将打乱后的数据集分割为训练集和测试集,训练集为前120行,测试集为后30行 x_train = x_data[:-30] y_train = y_data[:-30] x_test = x_data[-30:] y_test = y_data[-30:] # 转换x的数据类型,否则后面矩阵相乘时会因数据类型不一致报错 x_train = tf.cast(x_train, tf.float32) x_test = tf.cast(x_test, tf.float32) # from_tensor_slices函数使输入特征和标签值一一对应。(把数据集分批次,每个批次batch组数据) train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32) test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32) # 生成神经网络的参数,4个输入特征故,输入层为4个输入节点;因为3分类,故输出层为3个神经元 # 用tf.Variable()标记参数可训练 # 使用seed使每次生成的随机数相同(方便教学,使大家结果都一致,在现实使用时不写seed) w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1)) b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1)) lr = 0.1 # 学习率为0.1 train_loss_results = [] # 将每轮的loss记录在此列表中,为后续画loss曲线提供数据 test_acc = [] # 将每轮的acc记录在此列表中,为后续画acc曲线提供数据 epoch = 500 # 循环500轮 loss_all = 0 # 每轮分4个step,loss_all记录四个step生成的4个loss的和 ########################################################################## v_w, v_b = 0, 0 beta = 0.9 ########################################################################## # 训练部分 now_time = time.time() ##2## for epoch in range(epoch): # 数据集级别的循环,每个epoch循环一次数据集 for step, (x_train, y_train) in enumerate(train_db): # batch级别的循环 ,每个step循环一个batch with tf.GradientTape() as tape: # with结构记录梯度信息 y = tf.matmul(x_train, w1) + b1 # 神经网络乘加运算 y = tf.nn.softmax(y) # 使输出y符合概率分布(此操作后与独热码同量级,可相减求loss) y_ = tf.one_hot(y_train, depth=3) # 将标签值转换为独热码格式,方便计算loss和accuracy loss = tf.reduce_mean(tf.square(y_ - y)) # 采用均方误差损失函数mse = mean(sum(y-out)^2) loss_all += loss.numpy() # 将每个step计算出的loss累加,为后续求loss平均值提供数据,这样计算的loss更准确 # 计算loss对各个参数的梯度 grads = tape.gradient(loss, [w1, b1]) ########################################################################## # rmsprop v_w = beta * v_w + (1 - beta) * tf.square(grads[0]) v_b = beta * v_b + (1 - beta) * tf.square(grads[1]) w1.assign_sub(lr * grads[0] / tf.sqrt(v_w)) b1.assign_sub(lr * grads[1] / tf.sqrt(v_b)) ########################################################################## # 每个epoch,打印loss信息 print("Epoch {}, loss: {}".format(epoch, loss_all / 4)) train_loss_results.append(loss_all / 4) # 将4个step的loss求平均记录在此变量中 loss_all = 0 # loss_all归零,为记录下一个epoch的loss做准备 # 测试部分 # total_correct为预测对的样本个数, total_number为测试的总样本数,将这两个变量都初始化为0 total_correct, total_number = 0, 0 for x_test, y_test in test_db: # 使用更新后的参数进行预测 y = tf.matmul(x_test, w1) + b1 y = tf.nn.softmax(y) pred = tf.argmax(y, axis=1) # 返回y中最大值的索引,即预测的分类 # 将pred转换为y_test的数据类型 pred = tf.cast(pred, dtype=y_test.dtype) # 若分类正确,则correct=1,否则为0,将bool型的结果转换为int型 correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32) # 将每个batch的correct数加起来 correct = tf.reduce_sum(correct) # 将所有batch中的correct数加起来 total_correct += int(correct) # total_number为测试的总样本数,也就是x_test的行数,shape[0]返回变量的行数 total_number += x_test.shape[0] # 总的准确率等于total_correct/total_number acc = total_correct / total_number test_acc.append(acc) print("Test_acc:", acc) print("--------------------------") total_time = time.time() - now_time ##3## print("total_time", total_time) ##4## # 绘制 loss 曲线 plt.title('Loss Function Curve') # 图片标题 plt.xlabel('Epoch') # x轴变量名称 plt.ylabel('Loss') # y轴变量名称 plt.plot(train_loss_results, label="$Loss$") # 逐点画出trian_loss_results值并连线,连线图标是Loss plt.legend() # 画出曲线图标 plt.show() # 画出图像 # 绘制 Accuracy 曲线 plt.title('Acc Curve') # 图片标题 plt.xlabel('Epoch') # x轴变量名称 plt.ylabel('Acc') # y轴变量名称 plt.plot(test_acc, label="$Accuracy$") # 逐点画出test_acc值并连线,连线图标是Accuracy plt.legend() plt.show() # 请将loss曲线、ACC曲线、total_time记录到 class2\优化器对比.docx 对比各优化器收敛情况
p40_adam.py
# 利用鸢尾花数据集,实现前向传播、反向传播,可视化loss曲线 # 导入所需模块 import tensorflow as tf from sklearn import datasets from matplotlib import pyplot as plt import numpy as np import time ##1## # 导入数据,分别为输入特征和标签 x_data = datasets.load_iris().data y_data = datasets.load_iris().target # 随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率) # seed: 随机数种子,是一个整数,当设置之后,每次生成的随机数都一样(为方便教学,以保每位同学结果一致) np.random.seed(116) # 使用相同的seed,保证输入特征和标签一一对应 np.random.shuffle(x_data) np.random.seed(116) np.random.shuffle(y_data) tf.random.set_seed(116) # 将打乱后的数据集分割为训练集和测试集,训练集为前120行,测试集为后30行 x_train = x_data[:-30] y_train = y_data[:-30] x_test = x_data[-30:] y_test = y_data[-30:] # 转换x的数据类型,否则后面矩阵相乘时会因数据类型不一致报错 x_train = tf.cast(x_train, tf.float32) x_test = tf.cast(x_test, tf.float32) # from_tensor_slices函数使输入特征和标签值一一对应。(把数据集分批次,每个批次batch组数据) train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32) test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32) # 生成神经网络的参数,4个输入特征故,输入层为4个输入节点;因为3分类,故输出层为3个神经元 # 用tf.Variable()标记参数可训练 # 使用seed使每次生成的随机数相同(方便教学,使大家结果都一致,在现实使用时不写seed) w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1)) b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1)) lr = 0.1 # 学习率为0.1 train_loss_results = [] # 将每轮的loss记录在此列表中,为后续画loss曲线提供数据 test_acc = [] # 将每轮的acc记录在此列表中,为后续画acc曲线提供数据 epoch = 500 # 循环500轮 loss_all = 0 # 每轮分4个step,loss_all记录四个step生成的4个loss的和 ########################################################################## m_w, m_b = 0, 0 v_w, v_b = 0, 0 beta1, beta2 = 0.9, 0.999 delta_w, delta_b = 0, 0 global_step = 0 ########################################################################## # 训练部分 now_time = time.time() ##2## for epoch in range(epoch): # 数据集级别的循环,每个epoch循环一次数据集 for step, (x_train, y_train) in enumerate(train_db): # batch级别的循环 ,每个step循环一个batch ########################################################################## global_step += 1 ########################################################################## with tf.GradientTape() as tape: # with结构记录梯度信息 y = tf.matmul(x_train, w1) + b1 # 神经网络乘加运算 y = tf.nn.softmax(y) # 使输出y符合概率分布(此操作后与独热码同量级,可相减求loss) y_ = tf.one_hot(y_train, depth=3) # 将标签值转换为独热码格式,方便计算loss和accuracy loss = tf.reduce_mean(tf.square(y_ - y)) # 采用均方误差损失函数mse = mean(sum(y-out)^2) loss_all += loss.numpy() # 将每个step计算出的loss累加,为后续求loss平均值提供数据,这样计算的loss更准确 # 计算loss对各个参数的梯度 grads = tape.gradient(loss, [w1, b1]) ########################################################################## # adam m_w = beta1 * m_w + (1 - beta1) * grads[0] m_b = beta1 * m_b + (1 - beta1) * grads[1] v_w = beta2 * v_w + (1 - beta2) * tf.square(grads[0]) v_b = beta2 * v_b + (1 - beta2) * tf.square(grads[1]) m_w_correction = m_w / (1 - tf.pow(beta1, int(global_step))) m_b_correction = m_b / (1 - tf.pow(beta1, int(global_step))) v_w_correction = v_w / (1 - tf.pow(beta2, int(global_step))) v_b_correction = v_b / (1 - tf.pow(beta2, int(global_step))) w1.assign_sub(lr * m_w_correction / tf.sqrt(v_w_correction)) b1.assign_sub(lr * m_b_correction / tf.sqrt(v_b_correction)) ########################################################################## # 每个epoch,打印loss信息 print("Epoch {}, loss: {}".format(epoch, loss_all / 4)) train_loss_results.append(loss_all / 4) # 将4个step的loss求平均记录在此变量中 loss_all = 0 # loss_all归零,为记录下一个epoch的loss做准备 # 测试部分 # total_correct为预测对的样本个数, total_number为测试的总样本数,将这两个变量都初始化为0 total_correct, total_number = 0, 0 for x_test, y_test in test_db: # 使用更新后的参数进行预测 y = tf.matmul(x_test, w1) + b1 y = tf.nn.softmax(y) pred = tf.argmax(y, axis=1) # 返回y中最大值的索引,即预测的分类 # 将pred转换为y_test的数据类型 pred = tf.cast(pred, dtype=y_test.dtype) # 若分类正确,则correct=1,否则为0,将bool型的结果转换为int型 correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32) # 将每个batch的correct数加起来 correct = tf.reduce_sum(correct) # 将所有batch中的correct数加起来 total_correct += int(correct) # total_number为测试的总样本数,也就是x_test的行数,shape[0]返回变量的行数 total_number += x_test.shape[0] # 总的准确率等于total_correct/total_number acc = total_correct / total_number test_acc.append(acc) print("Test_acc:", acc) print("--------------------------") total_time = time.time() - now_time ##3## print("total_time", total_time) ##4## # 绘制 loss 曲线 plt.title('Loss Function Curve') # 图片标题 plt.xlabel('Epoch') # x轴变量名称 plt.ylabel('Loss') # y轴变量名称 plt.plot(train_loss_results, label="$Loss$") # 逐点画出trian_loss_results值并连线,连线图标是Loss plt.legend() # 画出曲线图标 plt.show() # 画出图像 # 绘制 Accuracy 曲线 plt.title('Acc Curve') # 图片标题 plt.xlabel('Epoch') # x轴变量名称 plt.ylabel('Acc') # y轴变量名称 plt.plot(test_acc, label="$Accuracy$") # 逐点画出test_acc值并连线,连线图标是Accuracy plt.legend() plt.show() # 请将loss曲线、ACC曲线、total_time记录到 class2\优化器对比.docx 对比各优化器收敛情况