---恢复内容开始---
Heron and His Triangle
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 2543 Accepted Submission(s): 1060
Problem Description
A triangle is a Heron’s triangle if it satisfies that the side lengths of it are consecutive integers t−1, t, t+ 1 and thatits area is an integer. Now, for given n you need to find a Heron’s triangle associated with the smallest t bigger
than or equal to n.
than or equal to n.
Input
The input contains multiple test cases. The first line of a multiple input is an integer T (1 ≤ T ≤ 30000) followedby T lines. Each line contains an integer N (1 ≤ N ≤ 10^30).
Output
For each test case, output the smallest t in a line. If the Heron’s triangle required does not exist, output -1.
Sample Input
4
1
2
3
4
1
2
3
4
Sample Output
4
4
4
4
4
4
4
Source
Recommend
jiangzijing2015
遇到求三角形面积且已知三边长 那就用海伦公式
Heron and His Triangle
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 2543 Accepted Submission(s): 1060
Problem Description
A triangle is a Heron’s triangle if it satisfies that the side lengths of it are consecutive integers t−1, t, t+ 1 and thatits area is an integer. Now, for given n you need to find a Heron’s triangle associated with the smallest t bigger
than or equal to n.
than or equal to n.
Input
The input contains multiple test cases. The first line of a multiple input is an integer T (1 ≤ T ≤ 30000) followedby T lines. Each line contains an integer N (1 ≤ N ≤ 10^30).
Output
For each test case, output the smallest t in a line. If the Heron’s triangle required does not exist, output -1.
Sample Input
4
1
2
3
4
1
2
3
4
Sample Output
4
4
4
4
4
4
4
Source
Recommend
jiangzijing2015
首先根据题意设a=t-1,b=t,c=t+1,这样我们可由海伦凯勒公式得到
那么要想使得s为整数,就要使 等于3乘以一个平方数
所以我们设
于是得到 d=3
根据题意可知最小特解为x=2,y=1;
打个表之后发现这样一些数字4,14,52,194,724,2702....然后得出递推式子,F[n]=4*F[n-1]-F[n-2];由于n非常的大,所以矩阵快幂维护也不行。最后考虑这样的数字几乎增长比较快,那么范围内这样的数字就会比较少,不想用高精度的可以考虑用java大数了,用个list将所有n范围内的结果保存一下,最后直接查询就可以了。