Python高级应用程序设计任务

Python高级应用程序设计任务要求


用Python实现一个面向主题的网络爬虫程序,并完成以下内容:
(注:每人一题,主题内容自选,所有设计内容与源代码需提交到博客园平台)

一、主题式网络爬虫设计方案(15分) 1.主题式网络爬虫名称 新浪微博热点话题爬虫。
2.主题式网络爬虫爬取的内容与数据特征分析 爬取新浪热点话题跟阅读量。
3.主题式网络爬虫设计方案概述(包括实现思路与技术难点)  先爬取页面的HTML,然后使用正则表达式爬取话题跟阅读量,再存在文件中。 二、主题页面的结构特征分析(15分)
1.主题页面的结构特征 Python高级应用程序设计任务

 

 页码在page=后面。

2.Htmls页面解析 Python高级应用程序设计任务

Python高级应用程序设计任务

 

我们想要的信息在script中,使用BeautifulSoup库只能爬取到script标签,难以对数据进行精确提取,所以我直接使用正则表达式进行爬取。

3.节点(标签)查找方法与遍历方法
(必要时画出节点树结构)
 使用re.findall()进行匹配。
三、网络爬虫程序设计(60分)
爬虫程序主体要包括以下各部分,要附源代码及较详细注释,并在每部分程序后面提供输出结果的截图。 程序:
 1 import requests
 2 import os
 3 import re
 4 
 5 
 6 
 7 #爬取页面
 8 def getHTMLText(url):
 9     try:
10         #假装成浏览器访问
11         kv = {'Cookie':'SINAGLOBAL=4844987765259.994.1544506324942; \
12               SUB=_2AkMqmKIaf8NxqwJRmPoVxWnmaIV-ygDEieKcxFPBJRMxHRl-yT9jqmc8tRB6ARiM9rPSLjsy2kCgBq61u7x2M9eTeKTA; \
13               SUBP=0033WrSXqPxfM72-Ws9jqgMF55529P9D9WFYIzVSU-rQ8YIqH5sJ2vs7; \
14               login_sid_t=6f2f5ed24c4e1f2de505c160ca489c97; cross_origin_proto=SSL;\
15               _s_tentry=www.baidu.com; UOR=,,www.baidu.com; Apache=9862472971727.955.1575730782698; \
16               ULV=1575730782710:6:1:1:9862472971727.955.1575730782698:1569219490864; \
17               YF-Page-G0=b7e3c62ec2c0b957a92ff634c16e7b3f|1575731639|1575731637',\
18               'user-agent':'Mozilla/5.0',\
19              'Accept':'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3'}
20         #获取目标页面
21         r = requests.get(url,headers = kv)
22         #判断页面是否链接成功
23         r.raise_for_status()
24         #使用HTML页面内容中分析出的响应内容编码方式
25         #r.encoding = r.apparent_encoding
26         #返回页面内容
27         return r.text
28     except:
29         #如果爬取失败,返回“爬取失败”
30         return "爬取失败"
31     
32 #爬取数据 
33 def getData(nlist,vlist,html):
34     #爬取新浪热门话题标题
35     flag = re.findall("alt=.{0,3}#.{1,15}#",html)
36     #对标题进行清洗
37     for i in range(len(flag)):
38         nlist.append(flag[i][5:])
39     #爬取话题浏览量
40     flag = re.findall('<span.{0,3}class=.{0,3}number.{0,3}>.{0,8}<.{0,3}span>',html)
41     #对浏览量进行清洗
42     for i in range(len(flag)):
43         vlist.append(flag[i][23:-9])
44     return nlist,vlist
45 
46 #打印结果
47 def printList(nlist,vlist,num):
48     for i in range(num):
49         print("````````````````````````````````````````````````````````````````````````````")
50         print("排名:{}".format(i+1))
51         print("标题:{}".format(nlist[i]))
52         print("阅读量:{}".format(vlist[i]))    
53 
54 #数据存储
55 def dataSave(nlist,vlist,num):
56     try:
57          #创建文件夹
58         os.mkdir("C:\新浪热门话题")
59     except:
60         #如果文件夹存在则什么也不做
61         ""
62     try:
63         #创建文件用于存储爬取到的数据
64         with open("C:\\新浪热门话题\\新浪热门话题.txt","w") as f:
65             for i in range(num):
66                 f.write("````````````````````````````````````````````````````````````````````````````\n")
67                 f.write("排名:{}\n".format(i+1))
68                 f.write("标题:{}\n".format(nlist[i]))
69                 f.write("阅读量:{}\n".format(vlist[i]))
70     except:
71         "存储失败"
72         
73 nlist = []
74 vlist = []
75 #新浪热点话题链接
76 url = "https://d.weibo.com/231650?cfs=920&Pl_Discover_Pt6Rank__4_filter=&Pl_Discover_Pt6Rank__4_page=1#Pl_Discover_Pt6Rank__4"
77 #获取HTML页面
78 html = getHTMLText(url)
79 #将数据存在列表中
80 getData(nlist,vlist,html)
81 #打印结果
82 printList(nlist,vlist,15)
83 #存储数据
84 dataSave(nlist,vlist,15)

运行结果:

Python高级应用程序设计任务

 

 Python高级应用程序设计任务

 

 Python高级应用程序设计任务

1.数据爬取与采集
#爬取页面
def getHTMLText(url):
    try:
        #假装成浏览器访问
        kv = {'Cookie':'SINAGLOBAL=4844987765259.994.1544506324942; \
              SUB=_2AkMqmKIaf8NxqwJRmPoVxWnmaIV-ygDEieKcxFPBJRMxHRl-yT9jqmc8tRB6ARiM9rPSLjsy2kCgBq61u7x2M9eTeKTA; \
              SUBP=0033WrSXqPxfM72-Ws9jqgMF55529P9D9WFYIzVSU-rQ8YIqH5sJ2vs7; \
              login_sid_t=6f2f5ed24c4e1f2de505c160ca489c97; cross_origin_proto=SSL;\
              _s_tentry=www.baidu.com; UOR=,,www.baidu.com; Apache=9862472971727.955.1575730782698; \
              ULV=1575730782710:6:1:1:9862472971727.955.1575730782698:1569219490864; \
              YF-Page-G0=b7e3c62ec2c0b957a92ff634c16e7b3f|1575731639|1575731637',\
              'user-agent':'Mozilla/5.0',\
             'Accept':'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3'}
        #获取目标页面
        r = requests.get(url,headers = kv)
        #判断页面是否链接成功
        r.raise_for_status()
        #使用HTML页面内容中分析出的响应内容编码方式
        #r.encoding = r.apparent_encoding
        #返回页面内容
        return r.text
    except:
        #如果爬取失败,返回“爬取失败”
        return "爬取失败"
2.对数据进行清洗和处理
#爬取数据 
def getData(nlist,vlist,html):
    #爬取新浪热门话题标题
    flag = re.findall("alt=.{0,3}#.{1,15}#",html)
    #对标题进行清洗
    for i in range(len(flag)):
        nlist.append(flag[i][5:])
    #爬取话题浏览量
    flag = re.findall('<span.{0,3}class=.{0,3}number.{0,3}>.{0,8}<.{0,3}span>',html)
    #对浏览量进行清洗
    for i in range(len(flag)):
        vlist.append(flag[i][23:-9])
    return nlist,vlist

 5.数据持久化
#数据存储
def dataSave(nlist,vlist,num):
    try:
         #创建文件夹
        os.mkdir("C:\新浪热门话题")
    except:
        #如果文件夹存在则什么也不做
        ""
    try:
        #创建文件用于存储爬取到的数据
        with open("C:\\新浪热门话题\\新浪热门话题.txt","w") as f:
            for i in range(num):
                f.write("````````````````````````````````````````````````````````````````````````````\n")
                f.write("排名:{}\n".format(i+1))
                f.write("标题:{}\n".format(nlist[i]))
                f.write("阅读量:{}\n".format(vlist[i]))
    except:
        "存储失败"
四、结论(10分)
1.经过对主题数据的分析与可视化,可以得到哪些结论? 通过此次的爬取分析可以直观的看出微博热门话题的类型跟关注度。
2.对本次程序设计任务完成的情况做一个简单的小结。 通过此次的设计任务,加深了我对爬虫的理解和掌握,也进一步加强了我对爬虫的兴趣。
上一篇:video标签实现多个视频循环播放


下一篇:2021年R1快开门式压力容器操作考试试卷及R1快开门式压力容器操作实操考试视频