题目描述
Farmer John's N (1 <= N <= 100,000) cows, conveniently numbered 1..N, are once again standing in a row. Cow i has height H_i (1 <= H_i <= 1,000,000).
Each cow is looking to her left toward those with higher index numbers. We say that cow i 'looks up' to cow j if i < j and H_i < H_j. For each cow i, FJ would like to know the index of the first cow in line looked up to by cow i.
Note: about 50% of the test data will have N <= 1,000.
约翰的N(1≤N≤10^5)头奶牛站成一排,奶牛i的身高是Hi(l≤Hi≤1,000,000).现在,每只奶牛都在向右看齐.对于奶牛i,如果奶牛j满足i<j且Hi<Hj,我们可以说奶牛i可以仰望奶牛j. 求出每只奶牛离她最近的仰望对象.
Input
输入输出格式
输入格式:
* Line 1: A single integer: N
* Lines 2..N+1: Line i+1 contains the single integer: H_i
第 1 行输入 N,之后每行输入一个身高 H_i。
输出格式:
* Lines 1..N: Line i contains a single integer representing the smallest index of a cow up to which cow i looks. If no such cow exists, print 0.
共 N 行,按顺序每行输出一只奶牛的最近仰望对象,如果没有仰望对象,输出 0。
输入输出样例
输入样例#1: 复制6 3 2 6 1 1 2输出样例#1: 复制
3 3 0 6 6 0
说明
FJ has six cows of heights 3, 2, 6, 1, 1, and 2.
Cows 1 and 2 both look up to cow 3; cows 4 and 5 both look up to cow 6; and cows 3 and 6 do not look up to any cow.
【输入说明】6 头奶牛的身高分别为 3, 2, 6, 1, 1, 2.
【输出说明】奶牛#1,#2 仰望奶牛#3,奶牛#4,#5 仰望奶牛#6,奶牛#3 和#6 没有仰望对象。
【数据规模】
对于 20%的数据: 1≤N≤10;
对于 50%的数据: 1≤N≤1,000;
对于 100%的数据:1≤N≤100,000;1≤H_i≤1,000,000;
#include <cmath> #include <cstdio> #include <cstring> #include <cstdlib> #include <iostream> #include <algorithm> using namespace std; int s[100001],a[100001],n; int main(){ scanf("%d",&n); for(int IAKNOIP=1;IAKNOIP<=n;IAKNOIP++){ scanf("%d",&a[IAKNOIP]); } for(int j,i=n-1;i>=1;i--){ j=i+1; while((a[i]>=a[j])&&(a[j]>0)){ j=s[j]; } s[i]=j; } for(int IAKNOIP2018=1;IAKNOIP2018<=n;IAKNOIP2018++){ printf("%d\n",s[IAKNOIP2018]); } ///*system("pause");*/ return 0; }