Description
下课了,露露、花花和萱萱在课桌上用正三棱柱教具和尺子摆起了一个“跷跷板”。
这个“跷跷板”的结构是这样的:底部是一个侧面平行于地平面的正三棱柱教具,
上面 摆着一个尺子,尺子上摆着若干个相同的橡皮。尺子有 2n + 1 条等距的刻度线,
第 n + 1 条 刻度线恰好在尺子的中心,且与正三棱柱的不在课桌上的棱完全重合。
露露发现这个“跷跷板”是不平衡的(尺子不平行于地平面)。于是,她又在尺
子上放 了几个橡皮,并移动了一些橡皮的位置,使得尺子的 2n + 1 条刻度线上都恰
有一块相同质 量的橡皮。“跷跷板”平衡了,露露感到很高兴。
花花觉得这样太没有意思,于是从尺子上随意拿走了 k 个橡皮。令她惊讶的事
情发生了: 尺子依然保持着平衡!
萱萱是一个善于思考的孩子,她当然不对尺子依然保持平衡感到吃惊,因为这
只是一个 偶然的事件罢了。令她感兴趣的是,花花有多少种拿走 k 个橡皮的方法
,使得尺子依然保 持平衡?
当然,为了简化问题,她不得不做一些牺牲——假设所有橡皮都是拥有相同质量的
质点。但即使是这样,她也没能计算出这个数目。放学后,她把这个问题交给了她
的哥哥/ 姐姐——Hibarigasaki 学园学生会会长,也就是你。当然,由于这个问题
的答案也许会过于 庞大,你只需要告诉她答案 mod p 的值。
Input
第一行,一个正整数,表示数据组数 T(萱萱向你询问的次数)。
接下来 T 行,每行 3 个正整数 n, k, p。
Output
共 T 行,每行一个正整数,代表你得出的对应问题的答案。
Sample Input
10
6 5 10000
4 1 10000
9 6 10000
4 6 10000
5 1 10000
8318 10 9973
9862 9 9973
8234 9 9973
9424 9 9973
9324 9 9973
6 5 10000
4 1 10000
9 6 10000
4 6 10000
5 1 10000
8318 10 9973
9862 9 9973
8234 9 9973
9424 9 9973
9324 9 9973
Sample Output
73
1
920
8
1
4421
2565
0
446
2549
1
920
8
1
4421
2565
0
446
2549
HINT
T <= 20,1 <= n <= 10000,1 <= k <= 10,2 <= p <= 10000,且 k <= 2n+1。
设f[i][j]表示用j个数组成i,那么可以由f[i-j][j]+f[i-j][j-1]得到。
转移后最大元素可能>n,但只可能为n+1,于是直接去掉这个数,减去f[i-n-1][j-1]。
都减一的转移思路还是蛮好的。
#include<cstdio>
const int maxn=1e5+; int f[maxn][];
int t,n,k,p; int main(){
scanf("%d",&t); while(t--){
scanf("%d%d%d",&n,&k,&p);
f[][]=;
for(int i=;i<=n*k;i++)
for(int j=;j<=i&&j<=k;j++){
f[i][j]=(f[i-j][j]+f[i-j][j-])%p;
if(i>=n+) f[i][j]=((f[i][j]-f[i-n-][j-])%p+p)%p;
} int ans=;
for(int i=;i<=k;i++)
for(int j=;j<=n*k;j++){
ans+=(f[j][i]*f[j][k-i]),ans%=p;
if(i<k) ans+=(f[j][i]*f[j][k-i-]),ans%=p;
}
printf("%d\n",ans);
}
return ;
}