提取肤色信息原理及操作——opencv

网上也有很多的资料,讲述怎么提取肤色的,大致有5种方法。这几种方法转载http://blog.csdn.net/augusdi/article/details/8865275

第一种:RGB color space

第二种:RG color space

第三种:Ycrcb之cr分量+otsu阈值化

第四种:YCrCb中133<=Cr<=173 77<=Cb<=127

第五种:HSV中 7<H<29

我来讲述一下提取肤色的原理。

这几种方法都不外乎一种操作,首先将图像的各个通道分离出来,如RGB  RG Ycrcb以及HSV几种单通道,然后对在各种通道上的数据分析,数据在一定范围内的图像提取出来,其余的数据都赋值0,这其实就是所谓的阈值处理,然而这个阈值会对光照,背景甚至摄像头的性能的影响,需要自己调整参数。

示例1:使用了opencv的cvInRangeS函数处理各个通道的数据,因为摄像头不好所以使用了高斯模糊以平滑图像,最后各处理后的通道图像按位与,合成一个图像。

void CAIGesture::SkinDetect(IplImage* src,IplImage* dst)
{
    IplImage* hsv = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 3);//用于存图像的一个中间变量,是用来分通道用的,分成hsv通道
    IplImage* tmpH1 = cvCreateImage( cvGetSize(src), IPL_DEPTH_8U, 1);//通道的中间变量,用于肤色检测的中间变量
    IplImage* tmpS1 = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1);
    IplImage* tmpH2 = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1);
    IplImage* tmpS3 = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1);
    IplImage* tmpH3 = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1);
    IplImage* tmpS2 = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1);
    IplImage* H = cvCreateImage( cvGetSize(src), IPL_DEPTH_8U, 1);
    IplImage* S = cvCreateImage( cvGetSize(src), IPL_DEPTH_8U, 1);
    IplImage* V = cvCreateImage( cvGetSize(src), IPL_DEPTH_8U, 1);   
    IplImage* src_tmp1=cvCreateImage(cvGetSize(src),8,3);
    cvSmooth(src,src_tmp1,CV_GAUSSIAN,3,3);    //高斯模糊
    cvCvtColor(src_tmp1, hsv, CV_BGR2HSV );//颜色转换
    cvCvtPixToPlane(hsv,H,S,V,0);//分为3个通道
/*********************肤色检测部分**************/
    cvInRangeS(H,cvScalar(0.0,0.0,0,0),cvScalar(20.0,0.0,0,0),tmpH1);
    cvInRangeS(S,cvScalar(75.0,0.0,0,0),cvScalar(200.0,0.0,0,0),tmpS1);
    cvAnd(tmpH1,tmpS1,tmpH1,0);
    // Red Hue with Low Saturation
    // Hue 0 to 26 degree and Sat 20 to 90
    cvInRangeS(H,cvScalar(0.0,0.0,0,0),cvScalar(13.0,0.0,0,0),tmpH2);
    cvInRangeS(S,cvScalar(20.0,0.0,0,0),cvScalar(90.0,0.0,0,0),tmpS2);
    cvAnd(tmpH2,tmpS2,tmpH2,0);

// Red Hue to Pink with Low Saturation
    // Hue 340 to 360 degree and Sat 15 to 90
    cvInRangeS(H,cvScalar(170.0,0.0,0,0),cvScalar(180.0,0.0,0,0),tmpH3);
    cvInRangeS(S,cvScalar(15.0,0.0,0,0),cvScalar(90.,0.0,0,0),tmpS3);
    cvAnd(tmpH3,tmpS3,tmpH3,0);

// Combine the Hue and Sat detections
    cvOr(tmpH3,tmpH2,tmpH2,0);
    cvOr(tmpH1,tmpH2,tmpH1,0);

cvCopy(tmpH1,dst);

}

示例2:

主要原理就是通过在Cb Cr空间上找到一个可以拟合常规肤色分布的椭圆形,然后把在椭圆形区域内的像素点标记为肤色。

其实代码很简单,就是把Y Cb Cr三个通道分开,然后用指针分别对这三个通道的每一个像素进行处理。

需要作修改的就是if(y<100) (*pMask)=(value<700) ? 255:0; else (*pMask)=(value<850)? 255:0; 这条做阈值判断的命令

  1. void cvSkinSegment(IplImage* img, IplImage* mask){
  2. CvSize imageSize = cvSize(img->width, img->height);
  3. IplImage *imgY = cvCreateImage(imageSize, IPL_DEPTH_8U, 1);
  4. IplImage *imgCr = cvCreateImage(imageSize, IPL_DEPTH_8U, 1);
  5. IplImage *imgCb = cvCreateImage(imageSize, IPL_DEPTH_8U, 1);
  6. IplImage *imgYCrCb = cvCreateImage(imageSize, img->depth, img->nChannels);
  7. cvCvtColor(img,imgYCrCb,CV_BGR2YCrCb);
  8. cvSplit(imgYCrCb, imgY, imgCr, imgCb, 0);
  9. int y, cr, cb, l, x1, y1, value;
  10. unsigned char *pY, *pCr, *pCb, *pMask;
  11. pY = (unsigned char *)imgY->imageData;
  12. pCr = (unsigned char *)imgCr->imageData;
  13. pCb = (unsigned char *)imgCb->imageData;
  14. pMask = (unsigned char *)mask->imageData;
  15. cvSetZero(mask);
  16. l = img->height * img->width;
  17. for (int i = 0; i < l; i++){
  18. y  = *pY;
  19. cr = *pCr;
  20. cb = *pCb;
  21. cb -= 109;
  22. cr -= 152
  23. ;
  24. x1 = (819*cr-614*cb)/32 + 51;
  25. y1 = (819*cr+614*cb)/32 + 77;
  26. x1 = x1*41/1024;
  27. y1 = y1*73/1024;
  28. value = x1*x1+y1*y1;
  29. if(y<100)    (*pMask)=(value<700) ? 255:0;
  30. else        (*pMask)=(value<850)? 255:0;
  31. pY++;
  32. pCr++;
  33. pCb++;
  34. pMask++;
  35. }
  36. cvReleaseImage(&imgY);
  37. cvReleaseImage(&imgCr);
  38. cvReleaseImage(&imgCb);
  39. cvReleaseImage(&imgYCrCb);
  40. }
上一篇:图解HTTP阅读笔记(1)-网络基础TCP/IP


下一篇:tensorflow的安装