- 4.4上午:数学基础
(qwq整成word和cpp了,它居然不能直接把文档附上来)
- part 1:高精度运算
高精加和高精减就不说了,之前写过博客了qwq,讲一讲高精乘和高精除吧。
1.高精度乘法(不知道为甚么害怕自己忘了老想再写一遍):
题干(就很简单惹):给定两个数a,b,求他们的乘积(a和b都很大);
显然如果直接乘,用一个数组存的话,可能会爆掉,(_int128也会爆的qwq),这时或许可以考虑将每一位分开存,然后就引入了神奇的高精度:
先读入两个数:这里用的是字符串char读入然后把每一位数字存到数组中:
for(int i = lena-;i >= ;i--)a[lena-i] = a1[i]-;//把字符串存进数组中
for(int i = lenb-;i >= ;i--)b[lenb-i] = b1[i]-;
/*刚刚搞了个大乌龙qwq(直接 a[lena-i] = a1[lena]-48;b[lenb-i] = b1[lenb]-48;*/
/*插入的主要代码qwq,lena,lenb分别为字符串a1,b1的长度。这里从1~len分别存从个位到x位的数字*/
首先有一个必须要解决的问题:乘出来的数应该存到哪一位??不妨模拟一下乘法计算:
由此可以看出,第一个数的第i项*第二个数的第j项应该放在i+j-1的位置。
搞定了前面,就可以进行乘法运算惹.,真的吹爆lh的算法:lh是先乘起来再处理,赶脚这样更好想也更好些一点;而且lh也没有用什么特判if之类的,让我这个蒟阵非常清楚自己在干什么qwq,比某ybt好多惹。
代码惹:
for(int i = ;i <= lena;i++)
for(int j = ;j <= lenb;j++)
c[i+j-] = c[i+j-]+a[i]*b[j]; //进行乘法运算
int len=lena+lenb-;//暂时定义最后答案的长度为lena+lenb-1(或许会更长,一会再处理)
for(int i=;i<=len;i++){
c[i+]+=c[i]/;//又搞了个乌龙导致答案算错惹,这些大概都是我的弱点吧(写一遍错一遍qwq
c[i]%=;
}
进行收尾的数据处理:
显然乘法计算时可能会有超出lena+lenb-1的情况,所以我们或许大概(啊呸)(那得麻溜的处理啊)需要处理一下:
这里有一个小细节,处理前方非零数位时,要用while而不是if,因为前面的数可能有若干个(突然想不没明白了qwq)
好惹,上代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
char a1[],b1[];
int a[],b[],c[],lena,lenb,lenc;
int main()
{
scanf("%s",a1);
lena = strlen(a1);
scanf("%s",b1);
lenb = strlen(b1);
for(int i = lena-;i >= ;i--)a[lena-i] = a1[i]-;//把字符串存进数组中
for(int i = lenb-;i >= ;i--)b[lenb-i] = b1[i]-;
//刚刚搞了个大乌龙qwq(直接 a[lena-i] = a1[lena]-48;b[lenb-i] = b1[lenb]-48;
for(int i = ;i <= lena;i++)
for(int j = ;j <= lenb;j++){
c[i+j-] += a[i]*b[j];
} //进行乘法运算
int len=lena+lenb-;//暂时定义最后答案的长度为lena+lenb-1(或许会更长,一会再处理)
for(int i=;i<=len;i++){
c[i+]+=c[i]/;
c[i]%=;
}
while(c[len+]!=)len++;
for(int i=len;i>=;i--)
printf("%d",c[i]);
}//亲测15*3是对的qwq
2.高精度除法(这里只讲了高精/低精):
其实高精除在乘法的基础上改一下核心语句就好惹,这里不细讲惹,我gun去写代码了,希望我核心的语句没有忘(写崩了写崩了!!!还是记不住qwq):
找到了错误,感觉自己还是在小细节上不够仔细(buxianggenvsheng),像什么scanf没有加引执符,%d搞成%s(这个是输入字符数组b的时候忘记改过来了qwq)
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std; char a1[];
int a[],b,c[],lena;
int main()
{
scanf("%s",a1);
lena = strlen(a1);
scanf("%d",&b);
for(int i = lena-;i >= ;i--)a[lena-i] = a1[i]-;//把字符串存进数组中
for(int i = lena;i >=;i--){//除法是唯一一个从高位开始算的
c[i]=a[i]/b;
a[i-1]+=(a[i]%b)*10;//意思是把这一位/b余下的余数加到下一位(比这一位低一位的)去(加到下一位就*10了呀)
}
while(c[lena]==)lena--;
for(int i=lena;i>=;i--)
printf("%d",c[i]);
}//亲测200/5有效
负数肿么办???
加法:一个数是负数:变为减法 两个数是负数:全部变为正数算加法,最后取负
减法:被减数是负数:全部变为正数算加法,最后取负 减数是负数:减数取负,变为加法 都是负数:都取负,变为减法,即(-减数)-(-被减数)
乘法:统计负数个数s 都变为非负数计算,若s为奇数,最后取负
- part2:模意义下的运算:
1.性质:
无除法运算,满足基本的交换律、分配率、结合律 对中间结果取模不影响最终答案
eg:快速幂
计算a^b % p = ?
法一:分治思想:
这个题洛谷有板子(不过编译失败是个什么鬼??)(交了个板子题结果我炸了???):
行吧经过我无数次(5次欸qwq)的没过板子emm我终于搞了个a了的代码:
分治的思想就是一分为二嘛,求a^b%p,可以先求a^(b/2)%p再相乘,然后再%p,要注意的是b不整除2的时候最后还要乘一个a,然后存答案的话要用long long,要不然会爆的(我就爆了***)
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int a,b,p;
int fz(int a,int b,int p){
long long ans=;
if(b==)return ;//当b=0时,a^0=1;
ans=fz(a,b/,p);//搞分治,b每次/2
ans=ans*ans%p;
if(b%==)
ans=ans*a%p;//乘回来b为奇数的那个a
return ans;
}
int main(){
scanf("%d%d%d",&a,&b,&p);
cout<<a<<"^"<<b<<" mod "<<p<<"=";//这个是洛谷板子题的要求qwq
cout<<fz(a,b,p)%p<<endl;//一定要模p啊qwq
}
法二:快速幂(板子又没过emm难到我数据又爆了??好像还真是qwq ):
行惹过了。突然想小反思一下:
感觉自己学信息奥赛这么久了,总是犯一些细节性的东西,基础还是不扎实,还需要努力盘一盘基础qwq
快速幂思想算是比较难理解代码的思想了,其实数学思想还好,比较好理解,就怕代码qwq
下面是某只zay的lh的解释??
a^7 = a^1 * a^2 * a^4 2进制:111
a^11 = a^1 * a^2 * a^8 2进制:1011
a^25 = a^1 * a^8 * a^16 2进制:11001
所以首先计算出 a^1、 a^2、 a^4、 a^8 …,利用2进制表示出a,若第x位上为1,则乘a的x次方,若为0,则不乘。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
long long a,b,p;
int kuaisumi(long long a,long long b,long long p){//钟大佬kuaisumi(拼音)的操作天下无敌了
long long ans=;
while(b>){
if(b&)ans=ans*a%p;//满足第x位上是1,ans乘上a^(2^(x-1));
a=a*a%p;//这里一直计算着a^2k次方2k=2^(x-1);
b/=;
}
return ans;
}
int main(){
scanf("%d%d%d",&a,&b,&p);
cout<<a<<"^"<<b<<" mod "<<p<<"=";
cout<<kuaisumi(a,b,p)%p<<endl;
}
费马小定理:
对于素数p和任意正整数a(0 ~ p-1),有a^(p-1) ≡ 1(mod p)
b * a = t
t * a^(p-2) = b t/a=b
//在模p意义下除以一个数等于乘这个数的p-2次方
应用:计算C(n,m) % (10^9+7) 10^9+7是质数 n ,m<=10,0000 Query 10,0000
思路:C(n, m) = n! / ( (n-m)! * m! )
= n! * ( (n-m)! * m! )^(p-2)
= n! * ( (n-m)! )^(p-2) * (m! )^(p-2) 预处理任意n!、(n! )^(p-2)
这个预处理怕不是要炸掉???(顺便吐槽下lh的代码质量qwq真的是金牌吗??
日常写标程写炸qwq
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
long long n,m;
long long b[],d[];
long long p=1e9+;
long long pow(long long a,long long b,long long p){//快速幂求阶乘的p-2次方
long long ans=;
while(b>){
if(b&)ans=ans*a%p;
a=a*a%p;
b/=;
}
return ans;
}
long long C(long long x,long long y){//求组合数的函数(思路见上
if(m>n)return -;
if(m==n||m==)return ;
else return b[x]*d[x-y]%p*d[y]%p;
}
int main(){
scanf("%lld%lld",&n,&m);
b[]=;
for(int i=;i<=;i++)b[i]=b[i-]*i%p;//预处理1~100000的阶乘
for(int i=;i<=;i++)d[i]=pow(b[i],p-,p)%p;//预处理1~100000阶乘的p-2次方
cout<<C(n,m)<<endl; }
拓展:给定n,m,p求Cnm%p的值:
只需要改一下输入就可以了,变为输入三个数,p不再定义为1e9+7;
- part3:
1.最大公约数:
这里用到了辗转相除(mo)法:请自行百度:
代码qwq:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int a,b,x,y;
int gcd(int a,int b){
if(b==)return a;
else return gcd(b,a%b);
}
int main(){
cin>>a>>b;
cout<<gcd(a,b);
}
最小公倍数:
这里有个小知识qwq:
lcm(a,b)*gcd(a,b)=a*b;
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int a,b,x,y;
int gcd(int a,int b){
if(b==)return a;
else return gcd(b,a%b);
}
int main(){
cin>>a>>b;
cout<<a/gcd(a,b)*b;
}
end-