TensorFlow学习日记(5)-Mnist数据集

input_data.py

# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions for downloading and reading MNIST data."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gzip
import os
import numpy
from six.moves import urllib
from six.moves import xrange  # pylint: disable=redefined-builtin
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
def maybe_download(filename, work_directory):
  """Download the data from Yann's website, unless it's already here."""
  if not os.path.exists(work_directory):
    os.mkdir(work_directory)
  filepath = os.path.join(work_directory, filename)
  if not os.path.exists(filepath):
    filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath)
    statinfo = os.stat(filepath)
    print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
  return filepath
def _read32(bytestream):
  dt = numpy.dtype(numpy.uint32).newbyteorder('>')
  return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]#新增加 [0]
def extract_images(filename):
  """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
  print('Extracting', filename)
  with gzip.open(filename) as bytestream:
    magic = _read32(bytestream)
    if magic != 2051:
      raise ValueError(
          'Invalid magic number %d in MNIST image file: %s' %
          (magic, filename))
    num_images = _read32(bytestream)
    rows = _read32(bytestream)
    cols = _read32(bytestream)
    buf = bytestream.read(rows * cols * num_images)
    data = numpy.frombuffer(buf, dtype=numpy.uint8)
    data = data.reshape(num_images, rows, cols, 1)
    return data
def dense_to_one_hot(labels_dense, num_classes=10):
  """Convert class labels from scalars to one-hot vectors."""
  num_labels = labels_dense.shape[0]
  index_offset = numpy.arange(num_labels) * num_classes
  labels_one_hot = numpy.zeros((num_labels, num_classes))
  labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
  return labels_one_hot
def extract_labels(filename, one_hot=False):
  """Extract the labels into a 1D uint8 numpy array [index]."""
  print('Extracting', filename)
  with gzip.open(filename) as bytestream:
    magic = _read32(bytestream)
    if magic != 2049:
      raise ValueError(
          'Invalid magic number %d in MNIST label file: %s' %
          (magic, filename))
    num_items = _read32(bytestream)
    buf = bytestream.read(num_items)
    labels = numpy.frombuffer(buf, dtype=numpy.uint8)
    if one_hot:
      return dense_to_one_hot(labels)
    return labels
class DataSet(object):
  def __init__(self, images, labels, fake_data=False):
    if fake_data:
      self._num_examples = 10000
    else:
      assert images.shape[0] == labels.shape[0], (
          "images.shape: %s labels.shape: %s" % (images.shape,
                                                 labels.shape))
      self._num_examples = images.shape[0]
      # Convert shape from [num examples, rows, columns, depth]
      # to [num examples, rows*columns] (assuming depth == 1)
      assert images.shape[3] == 1
      images = images.reshape(images.shape[0],
                              images.shape[1] * images.shape[2])
      # Convert from [0, 255] -> [0.0, 1.0].
      images = images.astype(numpy.float32)
      images = numpy.multiply(images, 1.0 / 255.0)
    self._images = images
    self._labels = labels
    self._epochs_completed = 0
    self._index_in_epoch = 0
  @property
  def images(self):
    return self._images
  @property
  def labels(self):
    return self._labels
  @property
  def num_examples(self):
    return self._num_examples
  @property
  def epochs_completed(self):
    return self._epochs_completed
  def next_batch(self, batch_size, fake_data=False):
    """Return the next `batch_size` examples from this data set."""
    if fake_data:
      fake_image = [1.0 for _ in xrange(784)]
      fake_label = 0
      return [fake_image for _ in xrange(batch_size)], [
          fake_label for _ in xrange(batch_size)]
    start = self._index_in_epoch
    self._index_in_epoch += batch_size
    if self._index_in_epoch > self._num_examples:
      # Finished epoch
      self._epochs_completed += 1
      # Shuffle the data
      perm = numpy.arange(self._num_examples)
      numpy.random.shuffle(perm)
      self._images = self._images[perm]
      self._labels = self._labels[perm]
      # Start next epoch
      start = 0
      self._index_in_epoch = batch_size
      assert batch_size <= self._num_examples
    end = self._index_in_epoch
    return self._images[start:end], self._labels[start:end]
def read_data_sets(train_dir, fake_data=False, one_hot=False):
  class DataSets(object):
    pass
  data_sets = DataSets()
  if fake_data:
    data_sets.train = DataSet([], [], fake_data=True)
    data_sets.validation = DataSet([], [], fake_data=True)
    data_sets.test = DataSet([], [], fake_data=True)
    return data_sets
  TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
  TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
  TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
  TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
  VALIDATION_SIZE = 5000
  local_file = maybe_download(TRAIN_IMAGES, train_dir)
  train_images = extract_images(local_file)
  local_file = maybe_download(TRAIN_LABELS, train_dir)
  train_labels = extract_labels(local_file, one_hot=one_hot)
  local_file = maybe_download(TEST_IMAGES, train_dir)
  test_images = extract_images(local_file)
  local_file = maybe_download(TEST_LABELS, train_dir)
  test_labels = extract_labels(local_file, one_hot=one_hot)
  validation_images = train_images[:VALIDATION_SIZE]
  validation_labels = train_labels[:VALIDATION_SIZE]
  train_images = train_images[VALIDATION_SIZE:]
  train_labels = train_labels[VALIDATION_SIZE:]
  data_sets.train = DataSet(train_images, train_labels)
  data_sets.validation = DataSet(validation_images, validation_labels)
  data_sets.test = DataSet(test_images, test_labels)
  return data_sets

Mnist数据集的一些常用操作:

代码如下:

import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
#from tensorflow.examples.tutorials.mnist import input_data
import input_data
print("pack loaded")
print("下载Mnist数据集")
mnist = input_data.read_data_sets("data/", one_hot=True)
print
print("type of 'mnist' is %s" %(type(mnist)))
print("number of train data is %d" %(mnist.train.num_examples))
print("number of test data is %d" %(mnist.test.num_examples))

print("What does the data of Mnist look like?")
trainimg=mnist.train.images
trainlabel=mnist.train.labels
testimg =mnist.test.images
testlabel=mnist.test.labels
print()
print("type of 'trainimg' is %s" %(type(trainimg)))
print("type of 'trainlabels' is %s" %(type(trainlabel)))
print("type of 'testimg' is %s" %(type(testimg)))
print("type of 'testlabels' is %s" %(type(testlabel)))

print("shape of 'trainimg' is %s" %(trainimg.shape,))
print("shape of 'trainlabels' is %s" %(trainlabel.shape,))
print("shape of 'testimg' is %s" %(testimg.shape,))
print("shape of 'testlabels' is %s" %(testlabel.shape,))

#训练数据集可视化展示
print("How does the training data look like?")
nsample=5
randidx=np.random.randint(trainimg.shape[0],size=nsample)
for i in randidx:
    curr_img =np.reshape(trainimg[i,:],(28,28))
    curr_label=np.argmax(trainlabel[i,:])
    plt.matshow(curr_img,cmap=plt.get_cmap('gray'))
    plt.title(""+str(i)+"th Training Data Label is"+str(curr_label))
    print(""+str(i)+"th Training Data Label is"+str(curr_label))
    plt.show()

#Batch learning?
print("Batch Learning?")
batch_size=100
batch_xs,batch_ys=mnist.train.next_batch(batch_size)
print("type of 'batch_xs' is %s" %(type(batch_xs)))
print("type of 'batch_ys' is %s" %(type(batch_ys)))
print("shape of 'batch_xs' is %s" %(batch_xs.shape,))
print("shape of 'batch_ys' is %s" %(batch_ys.shape,))

实验截图:

TensorFlow学习日记(5)-Mnist数据集

 

 TensorFlow学习日记(5)-Mnist数据集

 

 TensorFlow学习日记(5)-Mnist数据集

 

上一篇:Yolov3 的 OneFlow 实现


下一篇:vue深入了解组件——组件注册