1.1 实验原理
电影名称 | 打斗镜头 | 接吻镜头 | 电影类型 |
---|---|---|---|
电影1 | 1 | 101 | 爱情片 |
电影2 | 5 | 89 | 爱情片 |
电影3 | 108 | 5 | 动作片 |
电影4 | 115 | 8 | 动作片 |
表1.1
表1.2
使用k-近邻算法分类一个电影是爱情片还是动作片,表中红色点属于什么电影?
通过两点距离公式,,我们可以得到如下结果:
- (101,20)->动作片(108,5)的距离约为16.55
- (101,20)->动作片(115,8)的距离约为18.44
- (101,20)->爱情片(5,89)的距离约为118.22
- (101,20)->爱情片(1,101)的距离约为128.69
如果算法直接根据这个结果,判断该红色圆点标记的电影为动作片,这个算法就是最近邻算法,而k-近邻算法是这样的:
- 计算已知类别数据集中的点与当前点之间的距离;
- 按照距离递增次序排序;
- 选取与当前点距离最小的k个点;
- 确定前k个点所在类别的出现频率;
- 返回前k个点所出现频率最高的类别作为当前点的预测分类。
比如,现在我这个k值取3,那么在电影例子中,按距离依次排序的三个点分别是动作片(108,5)、动作片(115,8)、爱情片(5,89)。在这三个点中,动作片出现的频率为三分之二,爱情片出现的频率为三分之一,所以该红色圆点标记的电影为动作片。这个判别过程就是k-近邻算法。
1.2 k-算法代码调试
# -*- coding: UTF-8 -*-
import numpy as np
import operator
"""
函数说明:创建数据集
Parameters:
无
Returns:
group - 数据集
labels - 分类标签
Modify:
2017-07-13
"""
def createDataSet():
#四组二维特征
group = np.array([[1,101],[5,89],[108,5],[115,8]])
#四组特征的标签
labels = ['爱情片','爱情片','动作片','动作片']
return group, labels
"""
函数说明:kNN算法,分类器
Parameters:
inX - 用于分类的数据(测试集)
dataSet - 用于训练的数据(训练集)
labes - 分类标签
k - kNN算法参数,选择距离最小的k个点
Returns:
sortedClassCount[0][0] - 分类结果
Modify:
2017-07-13
"""
def classify0(inX, dataSet, labels, k):
#numpy函数shape[0]返回dataSet的行数
dataSetSize = dataSet.shape[0]
#在列向量方向上重复inX共1次(横向),行向量方向上重复inX共dataSetSize次(纵向)
diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet
#二维特征相减后平方
sqDiffMat = diffMat**2
#sum()所有元素相加,sum(0)列相加,sum(1)行相加
sqDistances = sqDiffMat.sum(axis=1)
#开方,计算出距离
distances = sqDistances**0.5
#返回distances中元素从小到大排序后的索引值
sortedDistIndices = distances.argsort()
#定一个记录类别次数的字典
classCount = {}
for i in range(k):
#取出前k个元素的类别
voteIlabel = labels[sortedDistIndices[i]]
#dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。
#计算类别次数
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
#python3中用items()替换python2中的iteritems()
#key=operator.itemgetter(1)根据字典的值进行排序
#key=operator.itemgetter(0)根据字典的键进行排序
#reverse降序排序字典
sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
#返回次数最多的类别,即所要分类的类别
return sortedClassCount[0][0]
if __name__ == '__main__':
#创建数据集
group, labels = createDataSet()
#测试集
test = [101,20]
#kNN分类
test_class = classify0(test, group, labels, 3)
#打印分类结果
print(test_class)
1.3 运行结果
1.3.1 数据集
1.3.2 k-代码运行