dp - bailian 2749:分解因数

题目描述

总时间限制: 1000ms 内存限制: 65536kB
描述
给出一个正整数a,要求分解成若干个正整数的乘积,即a = a1 * a2 * a3 * ... * an,并且1 < a1 <= a2 <= a3 <= ... <= an,问这样的分解的种数有多少。注意到a = a也是一种分解。
输入
第1行是测试数据的组数n,后面跟着n行输入。每组测试数据占1行,包括一个正整数a (1 < a < 32768)
输出
n行,每行输出对应一个输入。输出应是一个正整数,指明满足要求的分解的种数
样例输入
2
2
20
样例输出
1
4

解题分析

设f(a,b)表示分解a,使得a的所有因子不大于b的分解方式数,递归调用的入口就是 f(a,a).
递归策略是:
如果a %b == 0,f(a,b) = f(a/b, b) + f(a, b-1),可以理解为选b作为因子和不选b作为因子。
否则,f(a,b) = f(a, b-1)

解题代码

#include <cstdio>
int f(int a, int b){
    if(a == 1) return 1;
    if(b == 1) return 0;
    if(a % b == 0) return f(a / b, b) + f(a, b - 1);
    return f(a, b - 1);
}

int main(){
    int t;
    scanf("%d", &t);
    while(t--){
        int a;
        scanf("%d", &a);
        printf("%d\n", f(a, a));
    }
    return 0;
}
上一篇:最少费用 OpenJ_Bailian - 3251


下一篇:枚举 - bailian 4133:垃圾炸弹