参考: https://www.cnblogs.com/rockg/p/11286180.html
一.数据处理类型
联机事务处理 OLTP(on-line transaction processing)
联机分析处理 OLAP(On-Line Analytical Processing)
区别:
OLTP 是传统关系型数据库的主要应用,用来执行一些基本的、日常的事务处理,比如数据库记录的增、删、改、查等等
OLAP 则是分布式数据库的主要应用,它对实时性要求不高,但处理的数据量大,通常应用于复杂的动态报表系统上。
二.行式存储和列式存储
Row-based storage storesatable in a sequence of rows.
Column-based storage storesatable in a sequence of columns.
传统的关系型数据库,如 Oracle、DB2、MySQL、SQL SERVER 等采用行式存储法(Row-based),在基于行式存储的数据库中, 数据是按照行数据为基础逻辑存储单元进行存储的, 一行中的数据在存储介质中以连续存储形式存在。
列式存储(Column-based)是相对于行式存储来说的,新兴的 Hbase、HP Vertica、EMC Greenplum 等分布式数据库均采用列式存储。在基于列式存储的数据库中, 数据是按照列为基础的逻辑存储单元进行存储的,一列中的数据在存储介质中以连续存储形式存在。
从上图可以很清楚地看到,行式存储下一张表的数据都是放在一起的,但列式存储下都被分开保存了。所以它们就有了如下这些优缺点对比:
1.在数据写入上的对比
1)行存储的写入是一次完成。如果这种写入建立在操作系统的文件系统上,可以保证写入过程的成功或者失败,数据的完整性因此可以确定。
2)列存储由于需要把一行记录拆分成单列保存,写入次数明显比行存储多(意味着磁头调度次数多,而磁头调度是需要时间的,一般在1ms~10ms),再加上磁头需要在盘片上移动和定位花费的时间,实际时间消耗会更大。所以,行存储在写入上占有很大的优势。
3)还有数据修改,这实际也是一次写入过程。不同的是,数据修改是对磁盘上的记录做删除标记。行存储是在指定位置写入一次,列存储是将磁盘定位到多个列上分别写入,这个过程仍是行存储的列数倍。所以,数据修改也是以行存储占优。
2.在数据读取上的对比
1)数据读取时,行存储通常将一行数据完全读出,如果只需要其中几列数据的情况,就会存在冗余列,出于缩短处理时间的考量,消除冗余列的过程通常是在内存中进行的。
2)列存储每次读取的数据是集合的一段或者全部,不存在冗余性问题。
3) 两种存储的数据分布。由于列存储的每一列数据类型是同质的,不存在二义性问题。比如说某列数据类型为整型(int),那么它的数据集合一定是整型数据。这种情况使数据解析变得十分容易。相比之下,行存储则要复杂得多,因为在一行记录中保存了多种类型的数据,数据解析需要在多种数据类型之间频繁转换,这个操作很消耗CPU,增加了解析的时间。所以,列存储的解析过程更有利于分析大数据。
4)从数据的压缩以及更性能的读取来对比
图列分析:首先将Customes Name列及Material列做逻辑化索引标识,查询时分别匹配Materia=Refrigerator及Customes Name=Miller的数据,然后做交叉匹配
3.优缺点
1)行存储的写入是一次性完成,消耗的时间比列存储少,并且能够保证数据的完整性,缺点是数据读取过程中会产生冗余数据,如果只有少量数据,此影响可以忽略;数量大可能会影响到数据的处理效率。
2)列存储在写入效率、保证数据完整性上都不如行存储,它的优势是在读取过程,不会产生冗余数据,这对数据完整性要求不高的大数据处理领域,比如互联网,犹为重要。查询过程中,可针对各列的运算并发执行(SMP),***在内存中聚合完整记录集,***可能降低查询响应时间;可在数据列中高效查找数据,无需维护索引(任何列都能作为索引),查询过程中能够尽量减少无关IO,避免全表扫描;因为各列独立存储,且数据类型已知,可以针对该列的数据类型、数据量大小等因素动态选择压缩算法,以提高物理存储利用率;如果某一行的某一列没有数据,那在列存储时,就可以不存储该列的值,这将比行式存储更节省空间。
4.使用场景
如果你大部分时间都是关注整张表的内容,而不是单独某几列,并且所关注的内容是不需要通过任何聚集运算的,那么推荐使用行式存储。原因是重构每一行数据(即解压缩过程)对于HANA来说,是一个不小的负担。列式存储的话,比如你比较关注的都是某几列的内容,或者有频繁聚集需要的,通过聚集之后进行数据分析的表。
行式存储的适用场景:
1、适合随机的增删改查操作;
2、需要在行中选取所有属性的查询操作;
3、需要频繁插入或更新的操作,其操作与索引和行的大小更为相关。
列式存储的适用场景:
一般来说,一个OLAP类型的查询可能需要访问几百万甚至几十亿个数据行,且该查询往往只关心少数几个数据列。例如,查询今年销量最高的前20个商品,这个查询只关心三个数据列:时间(date)、商品(item)以及销售量(sales amount)。商品的其他数据列,例如商品URL、商品描述、商品所属店铺,等等,对这个查询都是没有意义的。而列式数据库只需要读取存储着“时间、商品、销量”的数据列,而行式数据库需要读取所有的数据列。因此,列式数据库大大地提高了OLAP大数据量查询的效率。
很多列式数据库还支持列族(column group,Bigtable系统中称为locality group),即将多个经常一起访问的数据列的各个值存放在一起。如果读取的数据列属于相同的列族,列式数据库可以从相同的地方一次性读取多个数据列的值,避免了多个数据列的合并。列族是一种行列混合存储模式,这种模式能够同时满足OLTP和OLAP的查询需求。
实操中我们会发现,行式数据库在读取数据的时候,会存在一个固有的“缺陷”。比如,所选择查询的目标即使只涉及少数几项属性,但由于这些目标数据埋藏在各行数据单元中,而行单元往往又特别大,应用程序必须读取每一条完整的行记录,从而使得读取效率大大降低,对此,行式数据库给出的优化方案是加“索引”。
在OLTP类型的应用中,通过索引机制或给表分区等手段,可以简化查询操作步骤,并提升查询效率。但针对海量数据背景的OLAP应用(例如分布式数据库、数据仓库等等),行式存储的数据库就有些“力不从心”了,行式数据库建立索引和物化视图,需要花费大量时间和资源,因此还是得不偿失,无法从根本上解决查询性能和维护成本等问题,也不适用于数据仓库等应用场景,所以后来出现了基于列式存储的数据库。对于数据仓库和分布式数据库来说,大部分情况下它会从各个数据源汇总数据,然后进行分析和反馈,其操作大多是围绕同一列属性的数据进行的,而当查询某属性的数据记录时,列式数据库只需返回与列属性相关的值,在大数据量查询场景中,列式数据库可在内存中高效组装各列的值,最终形成关系记录集,因此可以显著减少IO消耗,并降低查询响应时间,非常适合数据仓库和分布式的应用。
5.总结
1.传统行式数据库的特性如下:
①数据是按行存储的。
②没有索引的查询使用大量I/O。比如一般的数据库表都会建立索引,通过索引加快查询效率。
③建立索引和物化视图需要花费大量的时间和资源。
④面对查询需求,数据库必须被大量膨胀才能满足需求。
2.列式数据库的特性如下:
①数据按列存储,即每一列单独存放。
②数据即索引。
③只访问查询涉及的列,可以大量降低系统I/O。
④每一列由一个线程来处理,即查询的并发处理性能高。
⑤数据类型一致,数据特征相似,可以高效压缩。比如有增量压缩、前缀压缩算法都是基于列存储的类型定制的,所以可以大幅度提高压缩比,有利于存储和网络输出数据带宽的消耗。