MongoDB BI Connector 实战指南

MongoDB 使用 BI Connector 来支持 BI 组件直接使用 SQL 或 ODBC 数据源方式直接访问 MongoDB,在早期 MongoDB 直接使用 Postgresql FDW 来实现 SQL 到 MQL 的转换,后来实现更加轻量级的 mongosqld 来支持 BI 工具的连接。

MongoDB BI Connector 实战指南

安装 BI Connector

参考 Install BI Connector

wget https://info-mongodb-com.s3.amazonaws.com/mongodb-bi/v2/mongodb-bi-linux-x86_64-rhel70-v2.12.0.tgz

$tar xvf mongodb-bi-linux-x86_64-rhel70-v2.12.0.tgz
mongodb-bi-linux-x86_64-rhel70-v2.12.0/LICENSE
mongodb-bi-linux-x86_64-rhel70-v2.12.0/README
mongodb-bi-linux-x86_64-rhel70-v2.12.0/THIRD-PARTY-NOTICES
mongodb-bi-linux-x86_64-rhel70-v2.12.0/example-mongosqld-config.yml
mongodb-bi-linux-x86_64-rhel70-v2.12.0/bin/mongosqld
mongodb-bi-linux-x86_64-rhel70-v2.12.0/bin/mongodrdl
mongodb-bi-linux-x86_64-rhel70-v2.12.0/bin/mongotranslate

  • mongosqld 接受 SQL 查询,并将请求发到 MongoDB Server,是 BI Connector 的核心
  • mongodrdl 工具生成数据库 schema 信息,用于服务 BI SQL 查询
  • mongotranslate 工具将 SQL 查询转换为 MongoDB Aggregation Pipeline

启动 mongosqld

参考 Lauch BI Connector

mongodb-bi-linux-x86_64-rhel70-v2.12.0/bin/mongosqld --addr 127.0.0.1:3307 --mongo-uri 127.0.0.1:9555
  • --addr 指定 mongosqld 监听的地址
  • --mongo-uri 指定连接的 MongoDB Server 地址

默认情况下,mongosqld 自动会分析目标 MongoDB Server 里数据的 Schema,并缓存在内存,我们也可以直接在启动时指定 schema 影射关系。schema 也可以直接 mongodrdl 工具来生成,指定集合,可以将集合里的字段 shema 信息导出。

$./bin/mongodrdl --uri=mongodb://127.0.0.1:9555/test -c coll01
schema:
- db: test
  tables:
  - table: coll01
    collection: coll01
    pipeline: []
    columns:
    - Name: _id
      MongoType: float64
      SqlName: _id
      SqlType: float
    - Name: qty
      MongoType: float64
      SqlName: qty
      SqlType: float
    - Name: type
      MongoType: string
      SqlName: type
      SqlType: varchar

使用 MySQL 客户端连接 mongosqld

mongosqld 可直接支持 MySQL 客户端访问,还可以通过 Excel、Access、Tableau等BI工具连接

mysql --protocol=tcp --port=3307

mysql> use test
Database changed
mysql> show tables;
+----------------+
| Tables_in_test |
+----------------+
| coll           |
| coll01         |
| coll02         |
| inventory      |
| myCollection   |
| yourCollection |
+----------------+
6 rows in set (0.00 sec)

mysql> select * from coll01;
+------+------+--------+
| _id  | qty  | type   |
+------+------+--------+
|    1 |    5 | apple  |
|    2 |   10 | orange |
|    3 |   15 | banana |
+------+------+--------+
3 rows in set (0.00 sec)

// 对照 MongoDB 数据库里的原始数据

mongo --port
mymongo:PRIMARY> use test
switched to db test
mymongo:PRIMARY> show tables;
coll
coll01
coll02
inventory
myCollection
yourCollection
mymongo:PRIMARY> db.coll01.find()
{ "_id" : 1, "type" : "apple", "qty" : 5 }
{ "_id" : 2, "type" : "orange", "qty" : 10 }
{ "_id" : 3, "type" : "banana", "qty" : 15 }

SQL 转 Aggregation

比如要将针对 test.coll01 的 SQL 查询转换为 MongoDB Aggregation Pipeline,需要先通过 mongodrdl 分析 schema,然后使用 mongotranslate 工具来转换

// 导出分析的 shema 文件
$./bin/mongodrdl --uri=mongodb://127.0.0.1:9555/test -c coll01 > coll01.schema  

// SQL 转换为 Aggregation
$./bin/mongotranslate --query "select * from test.coll01" --schema coll01.schema
[
    {"$project": {"test_DOT_coll01_DOT__id": "$_id","test_DOT_coll01_DOT_qty": "$qty","test_DOT_coll01_DOT_type": "$type","_id": NumberInt("0")}},
]
上一篇:MongoDB Spark Connector 实战指南


下一篇:写在不幸做了一个傻逼运营活动之后