Python爬虫框架Scrapy实例(二)

目标任务:使用Scrapy框架爬取新浪网导航页所有大类、小类、小类里的子链接、以及子链接页面的新闻内容,最后保存到本地。

大类小类如下图所示:

Python爬虫框架Scrapy实例(二)

点击国内这个小类,进入页面后效果如下图(部分截图):

Python爬虫框架Scrapy实例(二)

查看页面元素,得到小类里的子链接如下图所示:

Python爬虫框架Scrapy实例(二)

有子链接就可以发送请求来访问对应新闻的内容了。

首先创建scrapy项目

# 创建项目
scrapy startproject sinaNews
# 创建爬虫
scrapy genspider sina "sina.com.cn"

一、根据要爬取的字段创建item文件:

# -*- coding: utf-8 -*-

import scrapy
import sys
reload(sys)
sys.setdefaultencoding("utf-8") class SinanewsItem(scrapy.Item):
# 大类的标题和url
parentTitle = scrapy.Field()
parentUrls = scrapy.Field() # 小类的标题和子url
subTitle = scrapy.Field()
subUrls = scrapy.Field() # 小类目录存储路径
subFilename = scrapy.Field() # 小类下的子链接
sonUrls = scrapy.Field() # 文章标题和内容
head = scrapy.Field()
content = scrapy.Field()

二、编写spiders爬虫文件

# -*- coding: utf-8 -*-

import scrapy
import os
from sinaNews.items import SinanewsItem
import sys
reload(sys)
sys.setdefaultencoding("utf-8") class SinaSpider(scrapy.Spider):
name = "sina"
allowed_domains = ["sina.com.cn"]
start_urls = ['http://news.sina.com.cn/guide/'] def parse(self, response):
items= []
# 所有大类的url 和 标题
parentUrls = response.xpath('//div[@id="tab01"]/div/h3/a/@href').extract()
parentTitle = response.xpath('//div[@id="tab01"]/div/h3/a/text()').extract() # 所有小类的ur 和 标题
subUrls = response.xpath('//div[@id="tab01"]/div/ul/li/a/@href').extract()
subTitle = response.xpath('//div[@id="tab01"]/div/ul/li/a/text()').extract() #爬取所有大类
for i in range(0, len(parentTitle)):
# 指定大类目录的路径和目录名
parentFilename = "./Data/" + parentTitle[i] #如果目录不存在,则创建目录
if(not os.path.exists(parentFilename)):
os.makedirs(parentFilename) # 爬取所有小类
for j in range(0, len(subUrls)):
item = SinanewsItem() # 保存大类的title和urls
item['parentTitle'] = parentTitle[i]
item['parentUrls'] = parentUrls[i] # 检查小类的url是否以同类别大类url开头,如果是返回True (sports.sina.com.cn 和 sports.sina.com.cn/nba)
if_belong = subUrls[j].startswith(item['parentUrls']) # 如果属于本大类,将存储目录放在本大类目录下
if(if_belong):
subFilename =parentFilename + '/'+ subTitle[j]
# 如果目录不存在,则创建目录
if(not os.path.exists(subFilename)):
os.makedirs(subFilename) # 存储 小类url、title和filename字段数据
item['subUrls'] = subUrls[j]
item['subTitle'] =subTitle[j]
item['subFilename'] = subFilename items.append(item) #发送每个小类url的Request请求,得到Response连同包含meta数据 一同交给回调函数 second_parse 方法处理
for item in items:
yield scrapy.Request( url = item['subUrls'], meta={'meta_1': item}, callback=self.second_parse) #对于返回的小类的url,再进行递归请求
def second_parse(self, response):
# 提取每次Response的meta数据
meta_1= response.meta['meta_1'] # 取出小类里所有子链接
sonUrls = response.xpath('//a/@href').extract() items= []
for i in range(0, len(sonUrls)):
# 检查每个链接是否以大类url开头、以.shtml结尾,如果是返回True
if_belong = sonUrls[i].endswith('.shtml') and sonUrls[i].startswith(meta_1['parentUrls']) # 如果属于本大类,获取字段值放在同一个item下便于传输
if(if_belong):
item = SinanewsItem()
item['parentTitle'] =meta_1['parentTitle']
item['parentUrls'] =meta_1['parentUrls']
item['subUrls'] = meta_1['subUrls']
item['subTitle'] = meta_1['subTitle']
item['subFilename'] = meta_1['subFilename']
item['sonUrls'] = sonUrls[i]
items.append(item) #发送每个小类下子链接url的Request请求,得到Response后连同包含meta数据 一同交给回调函数 detail_parse 方法处理
for item in items:
yield scrapy.Request(url=item['sonUrls'], meta={'meta_2':item}, callback = self.detail_parse) # 数据解析方法,获取文章标题和内容
def detail_parse(self, response):
item = response.meta['meta_2']
content = ""
head = response.xpath('//h1[@id="main_title"]/text()')
content_list = response.xpath('//div[@id="artibody"]/p/text()').extract() # 将p标签里的文本内容合并到一起
for content_one in content_list:
content += content_one item['head']= head
item['content']= content yield item

三、编写pipelines文件

# -*- coding: utf-8 -*-

from scrapy import signals
import sys
reload(sys)
sys.setdefaultencoding("utf-8") class SinanewsPipeline(object):
def process_item(self, item, spider):
sonUrls = item['sonUrls'] # 文件名为子链接url中间部分,并将 / 替换为 _,保存为 .txt格式
filename = sonUrls[7:-6].replace('/','_')
filename += ".txt" fp = open(item['subFilename']+'/'+filename, 'w')
fp.write(item['content'])
fp.close() return item

四、settings文件的设置

# 设置管道文件
ITEM_PIPELINES = {
'sinaNews.pipelines.SinanewsPipeline': 300,
}

执行命令

scrapy crwal sina

效果如下图所示:

打开工作目录下的Data目录,显示大类文件夹

Python爬虫框架Scrapy实例(二)

大开一个大类文件夹,显示小类文件夹:

Python爬虫框架Scrapy实例(二)

打开一个小类文件夹,显示文章:

Python爬虫框架Scrapy实例(二)

上一篇:pandas 实现通达信里的MFI


下一篇:输出排名第k的法雷级数的值;