POJ - 1860 Bellman-Ford判正环

心累,陕西邀请赛学校不支持,可能要自费了。。

思路:套用Bellman-Ford判断负环的思路,把大于改成小于即可判定是否存在从源点能到达的正环。如果存在正环,那么完全多跑几次正环就可以把钱增加到足够返回到S并且大于原来的金额。

AC代码

#include <cstdio>
#include <cmath>
#include <cctype>
#include <algorithm>
#include <cstring>
#include <utility>
#include <string>
#include <iostream>
#include <map>
#include <set>
#include <vector>
#include <queue>
#include <stack>
using namespace std;
#pragma comment(linker, "/STACK:1024000000,1024000000")
#define eps 1e-10
#define inf 0x3f3f3f3f
#define PI pair<int, int>
typedef long long LL;
const int maxn = 200 + 5;
int u[maxn], v[maxn];
double r[maxn], c[maxn];
double d[maxn];
bool bell(double st, int s, int n, int m) {
	for(int i = 0; i < n; ++i) d[i] = -inf;
	d[s] = st;
	for(int i = 0; i < n-1; ++i)
		for(int j = 0; j < m; ++j) {
			int x = u[j], y = v[j];
			if(d[x] > -inf) d[y] = max(d[y], (d[x] - c[j])*r[j]);
		}
	for(int i = 0; i < m; ++i) {
		int x = u[i], y = v[i];
		if(d[y] < (d[x] - c[i])*r[i] && d[x] > -inf) return true; //存在正环
	}
	return false;
}
int main() {
	int n, m, s;
	double V;
	while(scanf("%d%d%d%lf", &n, &m, &s, &V) == 4) {
		int cur = 0;
		for(int i = 0; i < m; ++i) {
			scanf("%d%d", &u[cur], &v[cur]);
			scanf("%lf%lf", &r[cur], &c[cur]);
			++cur;
			u[cur] = v[cur-1], v[cur] = u[cur-1];
			scanf("%lf%lf", &r[cur], &c[cur]);
			++cur;
		}
		if(bell(V, s, n, cur)) printf("YES\n");
		else printf("NO\n");
	}
	return 0;
}

如有不当之处欢迎指出!

上一篇:Nginx优化_自定义报错页面


下一篇:Mysql报错注入之floor报错详解