aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAoEAAACdCAIAAABEujUmAAAABmJLR0QA/wD/AP+gvaeTAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAH5klEQVR4nO3dO3bbOBQGYGZOFsY2fXqf9OlTxXuZfvpp2bv3AryRmUIxwvABgi9dQv6+yqIoAJRy9OeCFPHp5fXt+fnnv//83TRN0zRd1zXv2rZtZmR2m3vqtr1t2/THqh4n20+v6rc5aL+knfE4J8eTnioZ5+BVk8c71/XceArbyQwj33759lXvAADTXl7fvnx9ih4FAHw4f0UPAAA+KBkMADFkMADEkMEAEEMGA0AMGQwAMWQwAMSQwQAQQwYDQAwZDAAxZDAAxJDBABBDBgNADBkMADFkMADEkMEAEEMGA0AMGQwAMWQwAMSQwQAQQwYDQAwZDAAxPt+tp67r0t9t2w6297fcp98LSkO9+DgBOMT96uC2bSej5baxn5T36XeD8wbZ/Pl/kVM7AuAiLjEXXUXwrB1e13XpJf2/Fx34n4adunfRAwF4TL/mosffsykGxvXZODLHc8u3jeXzzLedu65b3Hmx38IeV7XTT9PCLtIRlQ8pM8jxm5kf5/ipxS42DxKAbf6og29fwSVVacqDwc797WtP9B7V72IjG9pJR9G+W2x/MIZ8QTlXMY87uj2bP979n2Nq5zpFOcDj2XhNVr9sPfZsa761fL9rZ03z++85rvxUweT++cO/HfKp08KyFuDOtl8X3Y+Z/V/fq2at5/ZfO4xTU2cwb18yzZ7RL23vZudEOgB5y9dk9VMk83DPIMoDuKTf/Kxv+f5rtw/0K/UqZnTXvm8A7PTp5fXt+fnnj+/fmpnrsJLBxrmJ1slzk+PtzdZKuqTfzHiaqfwuaac5sy7cM5hm/oMreW/zE+ZHzXMAMOHl9e3L16fF3TYUSeqq2vkEAU61cD64/KqiuRfuPA9KIB8cwLkK62AA4FiXuE8WAHxAMhgAYshgAIghgwEghgwGgBgyGABiDDM46rYMtdwOopZxAnB96mAAiPH7Pln98i7dJXiy5jtwe1S/R41zvDMAlBrcJ8tcdF4t4wTg+sxFA0AQ94sGgBDqYACIIYMBIIYMBoAYMhgAYshgAIghgwEghgwGgBgyGABifB48Xnsn5Ln90w0dC5uq5Q7MtYwTgOs7qw6WUgCQN6yD15K1ALDN9gzuLx/UT+KzlxUq6TdtH0wdm0kG4EJ2rtkwWMuv//CMZf7m2s/0mx5adhCASxmeD774+sG3EjaVs4OKdrKRwUvuM04AWLT3fPD9ZTLVJDMAFans98GpDO0n8dw+6WF+fwAIsT2DJ0/Bpqjruu6M2Ou33/QK37nt/YdiGIBr2XlNFgCwTWVz0QDwMGQwAMSQwQAQQwYDQAwZDAAxZDAAxJDBABBDBgNAjMrWbAhXyzgBuD51MADE+L1u0uQ6B5M134Hbo/o9apzjnQGg1OB+0eai82oZJwDXZy4aAIJYNwkAQqiDASCGDAaAGDIYAGLIYACIIYMBIIYMBoAYMhgAYshgAIhx1rpJaxsp7Ld7t2lQB3CvSgCOckodfF5KWSYBgIfxeXmXNdSIAFDo4AweL/N3ktRFqoz7nfbL5f46g9YcBOA6hhkclU9r+02Z2nVdWvd3sPHgIfb6BYD9zroma61arnWqZZwAXJ/fJgFAjMfP4P4EdWMyGYDLOPG66DMyL7U5uCbrtmV8oVb/oTlkAK7l5fXty9en6FGcznlcAK7m4Dr4auZ+sAQA4R48g+UuAJf1+NdkAcA1yWAAiCGDASCGDAaAGMNrsg75Ue/c73QXX7L/EqrydrZdMu1GHwAc5fjromtJKTfuACDWKffJCgzg62c/ANzU9/vg/kT3eG3g9FR+ZwAId8r6wRvOBxfuOQ7d9MLJueX+naVTC3uOUYQDcJRT1g9u23bt2daz7+e8M3r77TiFDMAh6puL3iYtrxQ8DgB4V9nvgweLAQNAvQ6ug/Pr+B7Vxe2P8Ynewd/9k8HjueizlzoGgAV1rR/cD3jVMABVq3suWuUKQL3quyZL7gLwGCqrgwHgYchgAIghgwEghgwGgBgyGABiyGAAiHHKmg0b1HLDjVrGCcD1qYMBIMbve3Tk77fcd+D2qH6PGud4ZwAoNbhftLnovFrGCcD1mYsGgCB1rZsEAA9DHQwAMWQwAMSQwQAQQwYDQAwZDAAxZDAAxJDBABBDBgNAjOn7RV//TsgV3bF5MNTBrS4XD2Fu/7XtHKWidx7g4n7VwemLdbw+AcmGt2UygNt3i23O7b+2nQP5FwJwlFrnolP23M3+AN7Z4Nz+949DMQxwiF9z0WvzLH3/pvX+JudIx/Xf+OHaOfBM+/vbWWy/f+Al7V8ngFcdb2Z72nJbQsqkNMBmwzq48GzfeIfxHGlTkBAb5sAzFfD+fue2px770787rW0kc9SLr117vM5NANzBHxm84XKbtZXQZME6+Ma/g3y/twrvvN7vXwTvOd57fi4AH8rwuuhtxdme7+hBPGxu58B+jypzM7O19yyC+3sedbz3/7wAHs/wuujmnCowtdz+ef449XXnOc+Sfufeh/L3Z67xuejq3hXuXx6Bxx6vAAY4xKeX17fn558/vn8bPJH/hu1/KY8nNiefSl/cg2/wTFOLXadXjQNmsan8OCfHk57aMP0+ebxzXc+Np7CdzDDy7ZdvF8AAB3h5ffvy9Sl6FADw4dT6+2AAqJ0MBoAYMhgAYshgAIghgwEghgwGgBgyGABiyGAAiPFX0zT/RQ8CAD4gdTAAxJDBABDjfzRC7RK6qqXTAAAAAElFTkSuQmCC" alt="" />
group by 后面加select中那些没有放在聚合函数中的参数:比如这个句子应该是加“sex”;
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAi0AAAA0CAIAAADJzZ9fAAAABmJLR0QA/wD/AP+gvaeTAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAF7klEQVR4nO2dq5YkNwyGK5cHMw0PzwkPD8q+S3h4aPFBIYOC5oSE5BkCetrHa8uy7JLLXd3fh3bcaukv+SK7tmrmu7f3j3/+/e/v9782AACA0/l2tQAAAHhpqEMAALAS6hAAAKyEOgQAACuhDgEAwEqoQwAAsBLqEAAArIQ6BAAAK6EOAQDASqhDAACwEuoQAACshDoEAAAroQ4BAMBKqEMAALAS6hAAAKyEOgQAACuhDgEAwEqoQwAAsJLvT4u073v8dwgha09bzokLGZM6YsBt7DL6ywgZg0tz3nkohCBOkltjWi3OiTvAPJHLmbcb6O3fVMkTJ9wXyg9cmoe4L3eJRefB5R1h9pF0rH8dNxDgwn5ntRB4Nj7vy5VjKy4B5f60XFbK+2y3RvsCdzPe971p3IxrjNjlJzbab4AM+K/9aPdv6Sw99CT99v4VUQaV3l/iJeghLMY1SWM6a/2VOWxK2qTxWQvR9GAPCnCQr85Dt2Fn2b3GAZ0Zp+29u2yvuE0nA37iVYQ7M/zffrQvFvbrTaPMyHOvfj3udt96Z8pLSz0Px6/XYp9e75jOkmg20MVd9qJaJZ+WwQ/Qy+B9uXSYeg1Ny/qlx80WL0tExf7IdQ3ozL5yxP9xZuvX44pBY+jZ66BLPk/QORtKDpzG+PNyLutOxO5HidsrY+o0c9TZ67/Xz62uiCK99HuNk1A5djwaV9HZRXb8BfCifR6K61G6lJQ/HhFhX6Qscb1ORb3tB3Uq9vudLv92Sifu+rfrLF6W/s1mwSMjTlgLl7g6eA6+eXv/+PLlt19/+Xlr/d911piO0dQyG7uiffrRwPRoxlX0bNJaafGTfmQsmXb/Ym7L1HVdbyj+/9y9fy36u/r3SKcY9fSGblIrwBadW6W/tmLcWsQH9bkGY0foebjWlgIuw9v7xw8//tQ0G9gcsZ9ygTQ+IGmnTOogX7cu3hiKMInP89Cff/wufnxwkzjwRYBLMHWEezlnGsI1MJ6HAAAAZjD43DYAAIAL1CEAAFgJdQgAAFZCHQIAgJVUf8/p9vXrCGmjaF97JaLm3/5CifIehlFP+sXeF5WafnpfeRlrP/iwU+8LPcprKFdh4aNiXiPN9yuTnMAw5D/yeR6KuQh3xPatyF3WvklLnm6vUNpE56KfkNB0ZQnd9JPq2aQkHGzfikyewxPMDXEYwDMxNqnPh5eumlTvy43N4XT5PrKAWt6Ys3ueVIROo5bJ/c7pimAxVFmK0DMh/57T8m7YyTRrWG8RCtI9Rt3e4seSpdSmZt/0E479/Z4aWU5qzms5TO3FtGTJtPixSG3G1Z2UJ/tybIjtdp36JqbUb+9WJc++OsNj/F0l/XpLP772+kfN/DfjvvhmIpKfh2r769ieJa7WXqPXXkGcQpl+r1hNP5lBnHViMhWHXYLDHYtx088mTT9RUmkfbRQ/vXFFDS5xFT1b0ncDOlPjFEVnbw8q9r46036vWfbmP5oZv1Lzn0607ELSlqa9rr8cD037Xp3Ktb8UeR2qZUcZ+l3xXFIv7lbE8Rfty43JWFzRj1g8lJnmUoTOwbeQu3D1CXxp/fu5d0rSGWTMW7kZNX5lnj00ke/L1UrRrQPKBVdsr9Frb1eomxmXVFGe4kd0m+0rU29jRUiJYrmoYVw6C56GUDkezY5onLypmb1ULNlMQ0p+HoqMFfx0BMzb3YuLuO+Oe7NlIBv3za/U7HU/a89JvbNa/G7o/zvxNa6+G31k/faRfA5RiTIIvU4zXn687F+KzzqULojl+liiJFTcv/R2QKYh2/inItMNWtYoCjYqqY170U85wnQ9XTNBWb7DndpVGPWISpo+j/jvpeZfiSsOodRe7OJJxd4xP7Wp4YU4qGrTx9IvYp6NqVDyJq4zStymvSgmaxnoRzEu5PD7tgHgxuwiN88tXJrqfTkAeDVmn2tr5yp4dTgPAQDAQjgPAQDASqhDAACwEuoQAACshDoEAAArkX+fwgzSJ2Sy9zy2mU/W1+JCxtRHpLrcZu98QBMyBpfmf6fTAhTmo9lAAAAAAElFTkSuQmCC" alt="" />
聚合函数有sum() 求和 avg()求平均 count() 求个数
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAhcAAACGCAIAAADhHj/QAAAABmJLR0QA/wD/AP+gvaeTAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAI4ElEQVR4nO3du5rjthUAYO54H0xd7Nqu48+9e1fed0nvPq1qT5XCU6XxfGnS5BU2hXa4MMALeHgTNP9fjSgOcAhQOCQkQd88v7z+57//+/fLvzoAWOjp7AAAaJgsAkCcLAJAnCwCQNzHw2q6Xq/935fLJduebjmmXjI7dUSg2L7L9FclLcaJjrsXuVwug6f4bWM61h9Tb8B+QZ5uv1y+tH/TSB64wbcleXCiu5jRamLIuPPw1tj7djDWvxumf05xfXN2IOzry4xW2dP9C7i8NiwHhXKG6raxfni67Xy9Xmd3nq23ssZF5fQb66cOAuWPPawvv6azpqveKf76/h00cVJN99fgIUxXUbPzWEixOMf6KytwNqRu6Pwcq2K2hG6f85bH85d7kVv311w59qdLtnO6fekptVW9s4UEyumP4vJmj/JvD+tf6vXHm9ayRzsvjX+63u7tMjaLvNxzuh3WH2/N/unxxuIs9bsFunjR/oPRbtXvlS8WWhec0UrPnq1OlJrRZ7rebOipqXFi/zXHFYgz+5c15a+3d/zT9Q5W2le996i0SXseEOcezup3mhb/jNa2Z099ORP1Lg1j15N+wziXlr+0nNvoMBjkVvFvdZ5cRi75700rcZY27PfsloVHNX8v0p9V6YlVPlwTRP0QU1PvVnckS7evjHNi/+ubReXXKwvZPP6unaGkpn+zV8E9G3zBjtm233knPjy/vH769OsvP//Uzb1Llm1Mz5h0z+xMGtw/fWrpEFNT70Q83dAZX1NO+lRlwqsvf7Bty6ZbdLyX4l3fzfu3Jv5F/bumUyrjWVr1rLFhtCbObqS/uuK8rQn+MvlufGVHbHje1ldK255fXr/74cfZ3QKXXU1cqd0/zXiH0k7ZqYO2LfaUs8ip+058uRf552//GHx65QVa4B+hCbue4VsV7mXIESrvRQCgFPykLwB0sggAa8giAMTJIgDEySIAxMkiAMTlWaSVLwq1EufetANwLvciAMR9XdM3vaQtl+VJnbi9lTjPaodyZ4B9Zd9db2WGpJU496YdgHOZ0QJgBetoARDmXgSAOFkEgDhZBIA4WQSAOFkEgDhZBIA4WQSAOFkEgDhr+t5L1bFiW+kv4FG5F1lmv3UPyzUWAe6fLLLA3kvnSiRAcz7O7zIiHezSgXVwezb+HrmS+Ww85d+p2Zi3bYfbavDX69Uy70AT8nuRy+VSM371w182+I5tTx9ukkJWxjlbeFd3Z9BKOwDsJPjuenYVnw1kg4WUF/5rbBLneq20A8BO4jNaE6PhXV0dbzVqj801bdsOR871AawXfHe9vwSemPbJLpNn999DTZz1ykK2bQcpBGhOMIv0g2A28I1tTx8emUhq4hyMZ2woH3ufY307SCFAk/zWIQBhvi8CQJwsAkCcLAJAnCwCQJwsAkCcLAJAnCwCQJwsAkDcU9d1n5PHrazu10qce9MOwLnciwAQ93VN38EVAwevc0/c3kqcZ7VDuTPAvp5fXr/9/us6Wq3MkLQS5960A3Cup8/z+wDAiN//+PPb7/9+dhQANCn/jBYA1PMZLQDiZBEA4mQRAOJkEQDiZBEA4mQRAOKeuu5D1304OwwAmvQxe1y5IlO/6sZZazc93spR2UImlYf2eO0AtCU4o2XY2lafDG66IqkA3Cfvi9wd+QNoSD6jtVQ5tZUOguktSzr3Yh5mjBQCtCW/F+lnVCplMzDpzEy355i4NM6GxNof4BRPXfc5XY+xld+raCXORQJH9JDtADTE+yL3xY0F0Jbjskg/x+VNkTHaBGhO8N318gfPbyPgbcvYt0l8hnVM1m6djAK04vc//vzbgb91aB4f4JGs/aRvJVfZAA/poCwicwA8pKfOWowARD11H6zpC0DQkwQCQNhT17kVASAo+Psis+rLiX186/G+uuj3RYAWnb8CivUEO78vAjTrY7fPhJbEECZ/AA2Jf18kXeak/O2Q/qnpnclIIUBb8iwSmI7PssLghEy64lZfwppE8sBJqGyr6Z13DAVgTv6+yN7rXK1MHmk5j3fZ7vdFgOYctAJKr1/69+B6W6FlgLYEP6OV/VgIm5BCgObE70XKd87Lh+XPkJQzWoP7h6NqlN8XAVr1/PL63Q8/Lv2vdMhzRwLwbm0zo+XCGeB92mBGC4B36/wVUABolywCQJwsAkCcLAJAnCwCQJwsAkDc0asxbqWVOPemHYBzuRcBIO7rtw6n179Knbi9lTjPaodyZ4B9ZetotTJD0kqce9MOwLnMaAGwQmxNXwDo3IsAsIYsAkCcLAJAnCwCQJwsAkCcLAJAnCwCQJwsAkDc8Dpa978iU7srR91nO5/YnlnV2YIusyGN7X9WO7d7ZkLMl3uR/tQvV/qjt75ZtHNmMIVc3nRzTTS2/4ntrGd5b1qd0eoHiMM89rhwfHt2c5ftSxv8fjpIIuFd+TKjtXQE6V8h/erl0zMJY5ecY/vXVD1W6ZpyZstPD3y2ilKsnevbbaxfJtpnaXvWVFHf/julkEDvLDofJrb3W27LLZva4uEN/NZhV/EiLHeIzSQEZh4mrprX1zu2va8xnTxZY/3seRrJRG7LBrvBEb++PdP2KVPIon6ctbRxBvevbOel58MexwuN+ksWCQxtS6+2Bq8Zs9fkAabrvV1F7ld7rJ3LLRNxHnwVvG0/rrwRybbXBLPmfDjyvIU7lH9GK3YBuPKaOlz7GhP17hrGJkc6NpXUW98vSy3tx8vknM/6G5Gl7bzt+XD8+QxnyT+j1e1zJd6XXM6EzA6Ie6ipd6wdyu3TtwXZnt2Sdh5rt7OMRR7rx7Gdx45xrJ2nU0hNO29+PgxGBQ/pw/PL66dPv/7y80/ZE9OvgfRlU97+Dz7Vv7Sy19hEUbNV9/9VDgGzRU3HORhP/1Tl9ulKF/3LRLulT802fle0T7g9V/ZjTTmDRzG2MX0q3M7T5ddvl0J4R/zW4Uo1l7oPIz3Yd3XgwJiP87sw6V1ddfZvZvQPz4wGuAOyCMvIHEAq/74IANSTRQCIk0UAiJNFAIiTRQCI+z8aMgbWal8dwgAAAABJRU5ErkJggg==" alt="" />
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAeUAAACKCAIAAAAbh8UOAAAABmJLR0QA/wD/AP+gvaeTAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAIX0lEQVR4nO3dvXrjNhoGUFqZC2O3SZ3Umyd9+lTje0mfPq3quEoRV9vEzzZp9hZmC404GP6C4O9nnVNZNA2AIPkaoijwm5fXt//+87//vP5ZAXBil6MbAEAWeQ0Qg7wGiEFeA8QgrwFikNcAMXzYrabr9dr8XNd1a3m6ZJ96WWijHVdQbLOL7d9Meiyo/cbXdV33Hhy3hWmq7lNvge0aeU4j27vdf9m5x0PakkfbQcXEdFCnuB4S4mQ7efNWd0hY35QdDyv+Y+YQ17ujG3Jen6+HdPuoOfS745fu6dS9vnFbmH9i31a+Xq+TK0/Wm1njrHKahflvJAvKH3q5bvkjA9Kc7R1q27rbm3889Bo5CMf3b+8mjFeRs/JQk8raObQfWwVONqma2r+bHoeZ5ZP6anx967ic0U3T0a2V0+Vzd8Za9U4WUlBOsxX13Rbl317mnyTL+yHdqG57qtNs73i91X1olm5R75rj/bP8+M9ZP93esnZ2Nast3/WzrLvfMw+2R1Z4PSTt97W6OOe8Ha+3ddLm1Diy/pLtKmhn609m1XX4Ib7n9nYL6a20qXrrzlml/3do5xaO2u8Pq/z+kHX7Pb+ckXrnNmPTw2XFdp5KPXClYt3tXeu4qgeGsWcTpZ1dK+737ts7WqbH183+SHdJ9+WSRuSfnDn1rjXKnrt8YTtH1r/ezWr/Wrrldxu5+vZWcU7anP5vnTVn1nuCD1l3vzPp6eX17fn54y8//1RNfQ7QWpj2dbpm77ndXV6N/mcekVPvSHuqvmMlp5z0V5n/WvLL7+3bbtfN3d7e5XXn866hHTG+vQXHQ872zjoeluzEzPbMrXrSUGDltLMa2I9V5zjPaXw9+vlk5o5Y8TjPr/Rxvby+fffDj5OrFQwNCv6ELt34DqQ7caMdum6xhxx1DvVJn8fXv//2a++vFw4iCv4Q3qVNz4i1Cnfanl3m+BqAYxXezwfAzuQ1QAzyGiAGeQ0Qg7wGiEFeA8TQzusot6xHaefZ6DeIy/gaIIYv8/Olw67u9AKpA5dHaefZllcD/dZdGTiv1vcbo7xfjtLOs9FvEJfrIQBBmD8EIATja4AY5DVADPIaIAZ5DRCDvAaIQV4DxCCvAWKQ1wAxmJ9vcxs1tazYQP0GtBhfr2AkAbebWak7ixPwvsnrpQ4J6xuRDQ/lw/QqA9KYSCOpd3krufacz7O4nd2fh9ZPf5jcxnX77TaH6vV6NTkqvHvt8XVd1zlnfhMcrTgbWp6+XCWsN2pnZqXddK7v1m3PUf0GnFDh542tEWgrAnoL6Q5alyj43OwMURWx34CTKL8eMpIjh8fiGQxdqVi33/a8sgQcq/DzxmaYNnI9oTWUm1x/a1sPLbvldzd23X4T1vBQnl5e356fP/7+26+31/kRkGZHun7v8laxy4Nmo3amy+v74xDTH3qr7l7OHmnqWv1W1ociHgLzfBmAENx/DRCDvAaIQV4DxCCvAWKQ1wAxyGuAGOQ1QAzyGiCGS1VVn5LXUeYDitLOs9FvEJfxNUAMX+bn651jqHcsduDyKO082/JqoN+6KwPn9fL69u33X+YPifJ+OUo7z0a/QVyXT9PrAHACf/z197ff//voVgAwoX1/CADn5P4QgBjkNUAM8hogBnkNEIO8BohBXgPEcKmqp6p6OroZAExoj68zv698vduiTTl8r/pmbifoN4ir8HqIqYLOQPLCQ/kwvQrnI6nhAS3N6yY4mhF3GiXpMDydw9N8ngt1p0gF3r12Xs/N0CY4rtdrM/9ya+HyVg7Vy1z6DeK6VNWndManKJ9HRWnn2eg3iMv91wAx7JfX6UWSyhtzgJkKP2/sPjjxlr+3Jd0PIdOX3o8v52GM8Ij++Ovvf+34fBnXTwHK7HT/9dBNfgBk2imvZTTAQpfKbE8AEVyqJ/PzAQRwEdUAIVyqyvAaIID2541r3cybX07ZrSNuOr6ZO0OLfoO4jv8+el3X4qOMO9nhoXyotrkcIoI3JanhAZXff51+6bw7t3Xzq/GVKeOb/fCACue/Hnn4QG+UpDONNCUsiWxxX0a/QVyFz9stttYTDMxDUka/QVx7P7+xmcZv53oBolv0fHSDNYDdlI+vex+wWw1Mzdws7F4PMZVzAZ0Gj+jl9e27H36c+1fpyNooG2AH61wPMbgD2NoK10MA2MHx30cHIIe8BohBXgPEIK8BYpDXADHIa4AY9p7vaS1R2nk2+g3iMr4GiOHL92XG5/1IHbg8SjvPtrwy5Qi8A635Q6K8X47SzrPRbxCX6yEAQZTNzwfAzoyvAWKQ1wAxyGuAGOQ1QAzyGiAGeQ0Qg7wGiEFeA8TQP3/I+WeWCDQDRqupra+DT27C0Ppzy1lLoJ6Hd+bz+Lo5CbtzA9Eo6JbesK7vJsscWn9uOStyhMBRol4PaXJqN8vDemGBQ+vvH50iGw7x+XrI3OxrztVmDs/e9+ndcWX35dzrMCPlLy9nsvx0w3PKP09Yz9rekeXNkttUfy6MwG56ni9TZYRRd4Xu+/QqI00KrsOMjKyX1zu0vKkxvQSx0NxCRrZ68m/nbq/rY3BCX+V1wUdJc0dYvQPhVjrsYLze28hxu9r3H1wv2d499wswon1/SNmgb8n53IqS4nJWrHet4fPIFYM9B9fpmmtt7/77C2jfH1JtM7psSq6/vt7d1LXz++6ceof6Ib9/hgofirnrXeb6+XG57vYKazjE08vr2/Pzx19+/qn1i/GzMT2Bu2+ue3/VnOSts32kqMmqm7/qhtFkUePt7G1P86uCS0C92ztU9VB7MssZacZ4+fnLhTUcwPNlAEKIev81wKOR1wAxyGuAGOQ1QAzyGiAGeQ0Qg7wGiEFeA8QgrwFi+D+bCGWMRPXtdAAAAABJRU5ErkJggg==" alt="" />
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAc8AAACHCAIAAAD/ZkXJAAAABmJLR0QA/wD/AP+gvaeTAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAIw0lEQVR4nO3dsZbbuBUAUDrxh6lNv33O9ttv5fmX7bffVr2rNFOl8kmTJt+QQh4aBkkQBMknkrq38lAQAD2QTyAsQX//+v7tP//937/f/9UBsJu/PbsDAC9BtgWIINsCRJBtASLItgARZFuACJ/DWrrf7/2/b7dbdjw9EtMumZ0GoqHafsiMVyURO4W4ue3tdhs9FR4H05wY026D/Tr5dPu95y0d37QnFw74tiTZUzjESsIpLq2Dd2+NvW8v2sZ3w7dJnuL+4dkdOYrvKwnDiPQn+nCuMbx4hisDj4P1l/Gj8P1+ny08225li4vq6Q/W37I11D/1Z339U4PVTY/LVFvb9r9+fEcVTqryeI2+hHITNYWnutTWz6mLK6twtkvd2PlZM9ajNXT7nLev7Ke57SNMNTORPqxZ4fT40tBv1e5sJQ319K/i9mGP+h9/VsYt7cmi11t/ye3a/0K73ce0qD8+rC1razQO68/nmvLp623r51BfrP4p/RMXlR/t7VbjXnmxvI7GlYQ0ylsFtOYqLbebXaI1LRbKr3ldDf3MnjLbxP1DWw/LAvpfaHe00b7pva/eTc7ngH7u4Vnj/iLaP5OwbZTr6ym0u7Qbu54cG/ZzKK12ZcK9Tdzjb9v/rc6T28QU8mjO0s+hDcc9mwIzP7fto59d4Rte8EsndOV2t5rhLj2+sp+F8vXT2NHRGR6fetZ+/e/Oc8nVhLocz0OZOiVGbTvuZD59ff/29vbl999+7eZWu7ODaWTTklnER8unDy29FGvaLfSnGzszaupJH6p8Y6ivfzS2w9CN1nOb+A+ZqU5OPdowvjX9XzS+awalsj9Lm541lW5q+tlNj+PUdVTuQ+EUrRyIDc/b+kZfxdf3b//45Z+zxRrexk/xzn98m4QxrcS4rBcQz22rfcqgO9My3+e2f/35x+jDK9/wG57ITozItnaN51aVG/RjqZzbArBG4yfAAFhEtgWIINsCRJBtASLItgARZFuACHm2PcsHks/Sz72JA5yFuS1AhB97gKVTpOHXrlNPPH6Wfj4rDsPCwFFk3yU7y53pWfq5N3GAs7CSABDCPgkAAcxtASLItgARZFuACLItQATZFiCCbAsQQbYFiCDbAkSwB9hRmm6r9izjBZjbLrPf/i/DvWaAK5FtF9h7qy0JFy7s83yRCWlSSBPQ6PEsT0XuEDjbn9G+dcmGh6PFyvXXtDta56PR+/1u+0S4mHxue7vdaq7zPk1k07Gp4+mfm6Tayn72JSunjWn/a/p5ojgAz9X4v2TZdC+74EcrKc8Ql6r/36H7h5UtjjpRHIDnal9JKGSN48y2hksBzabu8beNQ+QaCxCp8X/J+ilVIZFl064NE996fTey7JYdn3pWf2TbOEi1cGGfvr5/e3v78teffzz+rr/g00yRlh89nlW7Pq009HO4FFuuZOrR0Ur6JobtFlocZt6lMZGg4TT8dkMqnYdaEgU25PO2P5laYQBYqf1/ya5KhgX2YG4LEEG2BYgg2wJEkG0BIsi2ABFkW4AIfrvh3MQBzsLcFiDCj283jO6cMrU5y7OOn6Wfz4rDsDBwFNk+CWe5Mz1LP/cmDnAWVhIAQtgDDCCAuS1ABNkWIIJsCxBBtgWIINsCRJBtASLItgARZFuACPmvQFZ+477/tuizvpt/vZ0Bsi/gVr6068UBrqpxbuvy3lafNB+6QfIFzs5KwuHIs3BJ+UrCUsMlhTRZpFPg9J7X/e8UqRauKp/b9neylbI73/SOuNszdyzt54m0xR84OL+UcyANr+iScYBLsm57LCaqcFVx2bZfW7BoO0VM4MIa/5ds+INgj0zxODL1aVyfbZqSxa2TeeF6gn+7wToj8JrWfgKsklkb8OKCsq0MC7w4n0kAiCDbAkSQbQEiyLYAERr3t51VX0/bxxWu9xUJ+9vCtT1/bmtflc7+tvAC9voEmATaTJ6FS2rPtunXc4d71/YPlQuTkWrhqvJs27BcmGXP0RvhdEeFvoY1CffCyXoYq3LhHbsCbCd6f9uVSTat53rTQPvbwoUFfXO3128VFtzuWYgMXNWq39w1sdqWVAsX1j63Hf3Zx+zP4Ta4w5WE0fLNvTop+9vC9bXtb5umBjNcgFnbrCSYiAGUbbCSAMCs539zF+AVyLYAEWRbgAiyLUAE2RYggmwLECF6V5qtnKWfexMHOAtzW4AIP77dUN7fIPXE42fp57PiMCwMHEW2T8JZ7kzP0s+9iQOchZUEgBBte4ABsIi5LUAE2RYggmwLEEG2BYgg2wJEkG0BIsi2ABFkW4AI4/skHP8b9+fdGeCYcX5iPLOmsy8iz3ZpqvzSerZy3jOTvX2f2/anyHDHE3rrwyLOmdFUe/vQzYVoqvzSejZkZJly1pWE/ioKc+3rJz6e3dw0cGnAp8rHD5yEy6jvKwlLr7T+TOp3BRy9gxvOWYZ/Lr2zLtS/vp7Z+tMXPtvEUFuc6+M2NS6F+CyNZ00T9fE/TqpddD4UjvdHHtuzWVKgN/LbDV3F1TIsMLyD6yrO9YY768IsbH27U8f7FtOb0zXWr+6lPSm8B2RJYTQz1sczjc8w1S4ax1lLg1N4FbPPXXo+7PF6ubyfsm1DClj67j06acrO3QDldh+zkv1ab4vz8Eihn8Gzqm3HMX5iu+Z8iDxvObX8MwltE4qVc7Tm1tcotLtrNzZ5pVO38L3147LU0nG8Fe+1Iye2acmtzof485njyz+T0O0zs+trHt6BziaOPdS0OxWH4fHyNDMr2S2J81TcnmWq523jOFV46jVOxXl9qt38fFjUOi/i09f3b29vX37/7dfsgfK5kp5ew9uu0Yf6UzA7FwtVzTbdP2t4qcxWVe7naH/6hyqPlxtd9JRC3NKHZoPfDeLTHM+V41hTz+irmDqYPVSop9CNcv31x6VaRvjthpUqZ7XXkL7Yl3rhsN7n+SIUvdQspl9s7f98Zm/gVGRblpFhoU3+eVsA9iDbAkSQbQEiyLYAEf4PPu4rJOHClecAAAAASUVORK5CYII=" alt="" />
having关键字,打个不太恰当的比方,相当于where关键字,相对于筛选条件,具体查看备注
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAk4AAACACAIAAAByRnFPAAAABmJLR0QA/wD/AP+gvaeTAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAIxElEQVR4nO3dMXukuBkAYOz4h02Xu/quzj3XX3/V+r8kdVLnSUe9rlKsqzTr55o0+QubYtYsK4EQIBjQvG/lwVj6JBh9I5mBP728vv3x3//95/XfDQDU6PHWAQDAtqQ6ACon1QFQOakOgMpJdQBU7mm3mtq27X6+XC7B9v6WfeplpY0O3IJiu0Ps+GY6S48Vj3Pr0WY76XEsaFfZfttniN76oOw3q7tcLoONuW7sH8h96l1guyCPKdHe7c7OuedDP5J7O0CLnWWsP0ucO5g1jum32CEWME8xTh08vOJukueulp0PBT/TUKtaT5Kd29W2bf/tudHY2L4rUtpTV2jwi2Au3B994pEoXpC8bswfE687t207ufNkvZk1ziqn25i/MrCg/LGXZctPTINy2jsWW9n25p8PgxInYfr4DjYhXUXOzmMhLYtz7DgGBU6G1Ewd303Pw8zygwKX9U96/3T8mePYbv2QWW+8T3rcTpef2DPow3Q/JE7dyUhW+m5Wd61vcBAMdPEFO/e3z21DqXonC1lQTteKy7styr++zH9fre+HfqPieJrDtDddbxN9zIxLC+oa7J/153/O/v32Losz1u22/tDPsttxb98/9PSLmhV84jROx7/F+7HU+d8k2xXEkIhnbvlBCd0Opcrv/2pxzwQWLmAOdtxKOYc8XW8w3uXUmNh/TbsWxDl46mTWVepsWGzP9saFDFbaVb115xTp/x3i3MJuxz3es303J96t3Or8nzRYfql+2zr4spZfgVn2UOWXk6h3bhibHqSCcR7KZWRpsWx7S51Xl5HJ09GcJc7YTc7zeKZyc8d8vw++W4vEs0OeCybBK03P6rpDGJxeBc+2/F7LqbfU3G7u9pVxJvZPf4Dd+rNtXH4cZPH2NucZ93P6P3jXHNngG3xM2eO+3qzg88uZdLR+6BurYs3ZGASfU06pQ7PYw8vr2/Pzh99/+7Vf/WA0wcZ+8/p7Dg6L8fbm+2OQ3/KcehPxNEPHPqec/q8ys3J++YN9G3fd3PYObr9El0WMHYh0execDzntnXU+rDmImfHMrXrS2BiXE2czchyb6DzPCf6SvIwl80AUPM8Thcfnxlg/jBU7OA7knHhH6IdmJP6x7Tn9NlljOpjJwWqs/AVv8MVxfufl9e3Hn3/JqTLu0+J/Qkw3VqB/EDc6oGWLvfOzbofjdZ9mdWbZnv86q/vn3/86Vln384KPrgv+EKq06TuiVOHeth1dUdAhOjNzVgcAJzV9WQoAnJpUB0DlpDoAKifVAVA5qQ6Aykl1AFTusWmaL73XZ/m+5FniPBr9BtwhszoAKvftyQb9D/vdnccGZwA33H6WOI+2vRnpt3hngAq9vL798NO3u6WcZYHrLHEejX4D7tDjl+l9AODMPn76/MNPf7l1FACwlfAKTACojCswAaicVAdA5aQ6ACon1QFQOakOgMpJdQBU7rFpHprm4dZhAMBWwlndWW4cdZY4m81CXVbsifoNoBQLmAUkksd2N1aOb+IMwCCpbq2b5Lkr2Q4gx9P0LiP6I2x/NB/cHgz6ez5EZnGc8c9j+/d/mGxj2X67PrinbVtP5AEYE87qLpdLzqDZjblBJhjb3n9ZJM9tFGdmpXFiu7wrG8+t+g2gJo9N86V/w+fMyxaCeU8weg4WEk+V1lhwecURRvkz9hvA2S1fwEwMwTfPKEcwtrRYtt/2XAoGOKmFl6V0k4PEAmAwgZjcf2tbT2ji8uPGlu03eQ4gx8PHT58/PH/41z/+dn2dP3r2h93+/oPbg2LXj9Ebxdnffp2WBT8MVh3/6y4Raql+W9aHsiNwjz5++vxnTyEHoF6+VwdA5aQ6ACr32LjZMwBVe2wePNkAgJo9ynIA1O2xaUzqAKiZy1IAqJxUB0Dlwiswz3I74LPEeTT6DbhDZnUAVO7bkw0GbzE8OAO44fazxHm07c1Iv8U7A1To5fXtx59/6V6eZYHrLHEejX4D7pAFTABqF8zqAKAyZnUAVE6qA6ByUh0AlZPqAKicVAdA5aQ6ACon1QFQOakOgMqFqS7zxlHtuy1iyuEGV1dzO0G/AXdo4azOnYKPQNICyPE0vQvHI8kB5Fub6roxt5vn9Ufh/uSv/+AYD5FZKX4uDwBjwlQ3N/10Y27btt3z0oKN66Mcq5e59BtwhxZelnJzZ4nzaPQbcId82QCAyu2X6vqrmo2VNAD2svCylC5dBZelXLfE16r0X1pAW6/fhz46AEzY+Snk/lcEwM52+l7d2DcQAGBrO6U66Q2AW3EFJgCVk+oAqJxUB0DlpDoAKifVAVA5qQ6Ayrnd833Rb8AdMqsDoHLfvkI+eFvFwRnADbefJc6jbW/cNhO4Z8E9MM+ywHWWOI9GvwF3yAImALXb+ckGALAzszoAKifVAVA5qQ6Aykl1AFROqgOgclIdAJWT6gConFQHQOWegtdt2x7q1ognultjEGpw/63JJoztP7ecUk7U8wBp383q3B3xakE/DOa5y7vJMsf2n1tOQTtXB7Cdr6nusHcB7ob43azPcysLHNt//wMk2wF1+LqAOXdQ6/bsHhwzuOAWz3IGX6arGCt8soREOZPl9xuYU/5x8tys9ia2d1uuH4OsZALntfCylHjgixfcmnUTgsR8Lr/8sXjGtnc19tcMV5pbSKLVk387t70FjxfAYa29AnPu5/2dB9P+CB6nrq2Xbfef0q1p7/5rxQD7CK/AnOs6OB55iAxG//hX68tPLPHtOaXr71mqvTlLzQAHt9P36rrx9xL9b29T3TwmsUA3NtfJn/ONFT7WxvZd5v75fVW2vfIcUIeHl9e35+cPv//2a/CL9ACXuJYhfflDfqobzATxOD6rnDieeHv/VwvWZrs/CeIfrHosnsxyEmGky8/fLs8BNfAUcgDq5sZgAFROqgOgclIdAJWT6gConFQHQOWkOgAqJ9UBUDmpDoDKSXUAVE6qA6ByUh0AlZPqAKicVAdA5aQ6ACon1QFQOakOgMr9HxhhFrwQNGkHAAAAAElFTkSuQmCC" alt="" />
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAnQAAACCCAIAAABAX8K1AAAABmJLR0QA/wD/AP+gvaeTAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAIzklEQVR4nO3dsZbbNhYAUDnxh6l1794nffpUnn9Jnz4t+6nSqEo1Z5tt9hu2kIemARIEwUeKlO+tRhwKeAAoPAGjoX59vb3957//+/f2zwUAiPDLowMAgGcjuQJAMMkVAIJJrgAQTHIFgGCSKwAEk1wBIJjkCgDBJFcACCa5AkAwyRUAgkmuABBMcgWAYB93q6nruv7n6/WaHB8e2adeVtpo4BqK7YfY+FY6S4+Fx7n1bHNe5Xky6bfYcdknBew/6PutXK/X62jz7geHQ7tPvQ22C/KYCu3d7npdej0MI/nZBqjZWbLLWeI8pkUvh0XzpHGpcYht4VPMjAcPL9xDMutd2/UQ+C6KZ/XzXCSx89XO/dZ13TD+jebe7t0WhV/6beG8gmQHYDjf5XNfvs17P1g/C99P7rpu9uTZeitrXFROf7B+P6Sh/KmHseUXlno17Z2KLba99dfDqMJFWB7f0SaUq6g5eSqktjinxjEpcDaky9z4bnodVpafFNjWP+Xzy/FXzmOb9kNNnHmBl7HxXarmOp+aUupfF/VtL/dz4aUxG0m4H1au9whGp91EH3Fy8vD40lZF1TtbSEM5fSuu77Yo//6w/pW8vh+GjcrjuRymveV6L9lb3by0pK7R/ll//decP2xvW5y5/rT1Q7/IbuPevb/NGha1KPjCZVyOf4vXY1s/LC3/Uv36ral0yjD+hvlntPykhP6EqPKHv1rTOWW/zJ8yZrQrV6q5yMr1JjNsTY2F89e0qyHO0Yupsq7tro/6GC57tTcvZLTSvuqtOyek/3eIcwu7jXt+ZvduSbxbedT1/3Cj8UeNy9k7p/3TwrEXx6K3b1PnLw1j02ELjPNQrhMbtrHtjbqurhMLxKM5S5y5h1zn+Wrp4Z719V42OhuEtHeHzJov9GPNr1z7iya5oAOv7/p+rKk3av269PjKOAvnl9+kb/3+PS8/DzK8vZfzTEk1/Z+8ao5s9AU+JXbc11sUfH05s47WD4V6w001YU29SefUlBM19IE+vN7eXl6+/vH7b5exre3hqcnBYYOHZ45OxPnxy4+jUt8XNfUW4rmMXQ015Qx/Vfk+oL780b7Nu25pe0ePX7MP1EwNRLm9DddDTXsXXQ9rBrEynqVVz5qaVWvivEyM4yW7zmuCvxY/AFU5EIHXeaHw/NqY6oepYkfngZoL7zj9MBrnFvPV8FmFfhsNqfl1kQQzOxlOld8wgTTHOeP19vbp85eaIPJeDn8KOd34BIaDuNGAxhb7k191O4wXW1g0WFuP7LeV699//TlVff9zw9vzhifCU9r0FRFVuJdtT1ecyEEHq3LlCgBUmv9AEwCwiOQKAMEkVwAIJrkCQDDJFQCCSa4AECxNrmf5j+mzxHk0+g1gB1auABDs+7fiDBc0/R0XR1c5Dzx+ljiPdvwy0W/5yQAESO7QdJZtw7PEeTT6DWAHtoUBIJp7CwNALCtXAAgmuQJAMMkVAIJJrgAQTHIFgGCSKwAEk1wBIJjkCgDBfCvO5jYKta3YE/UbwHlZuQYopKvtbpGf344fgIOQXNd6SGa9k18Bjunj/CkThnP6MH+MHk/SzJ5fedYcZ/7z1PnDH2bbGNtv96+Z67rO98cBHEe6cr1erzXTdD/LJ7ln6vjwYUhm3SjOykrzVHp9FxvPo/oNgDUaP9CUrO2S+Xq0kHw5uEbDB3OOkFfO2G8ALNW+LVyY9B+ew45gasM2tt/23GAHoFLjB5r6BVBhWzVZJM2ev7WtF215+XljY/tNZgU4pg+vt7eXl69///Xn/XH9fD2c6Ifnjx5Pil2fFTaKc3j8vvRMfhitOv8TbCHUqH5r60P5GGAPr7e3T5+/PDoKAHge/s8VAIJJrgAQTHIFgGCSKwAEk1wBIJjkCgDBJFcACCa5AkCwxhv3P9xZ4jwa/QawAytXAAj2/VtxRm8WP7rKeeDxs8R5tOOXiX7LTwYgQHJv4bNsG54lzqPRbwA7sC0MANF8Kw4AxLJyBYBgkisABJNcASCY5AoAwSRXAAgmuQJAMMkVAIJJrgAQ7GPyOOqus/XlDO/GV1+vu+PedV23qBP0G8AOHr9yvV6v5vo27hIMcEzpyjWKfLkpaRXgyNqTaz+/9990ln+1WZ9ip06mTd7VABxHmlwrc16eTfsnjs77+VeNLv1jYVucJPQbwA7Sv7lu/X2fK3PqsBzrtgb6DWAHW/3Ndco9s1o/AfDEGj8t3O/9WgYBQKJ95Zp/WCl/2P85tj+YbwuPnt8c1U9CpwEc2uvt7dPnL0ufNVyzWr8CwFDMtrBlEwD0AraFAYChx9/+EACejOQKAMEkVwAIJrkCQDDJFQCCSa4AEGzvG/dHOUucR6PfAHZg5QoAwb7fRKJ8T+ChBx4/S5xHO35xO2KAPSX3Fj7LtuFZ4jwa/QawA9vCABCt7VtxAIApVq4AEExyBYBgkisABJNcASCY5AoAwSRXAAgmuQJAMMkVAIJ9TB53XXeoW86e6C64SajJXQZnmzB1/tJyopyo5wGO5oeVq7vO3jX0w2hmvb6bLXPq/KXlBNq5OoBn8i25HvZ+7n1S2c36zLqywKnz9x8g+RWgzbdt4aXTaH9m/zVno9uY+Upu9GG5iqnCZ0solDNb/rCBNeUfJ7Muam/heH/k/sbL/jBAvcYPNOVTbb6NeVm36CmsWevLn4pn6nhf43AndqWlhRRaPfvcpe0NHC8Aems/Lbx0TbPz9D3MGXmy3HozfP9l65r27r8DD/Cs0k8LL3Wfjo88KSf5Jv/V+vILG6d7LluHZ0a1t2YDH4DETv/n2s/41+xvtJvq12qFbc+p9Vz9unaq8Kk2du8qz6/vq9j2yqwAbT683t5eXr7+8ftvyS/KU2rhUzDlD87UJ9fR3JNnjkXl5PHkx4e/atjx7p+SxD9a9VQ8leUUwiiXX39cZgVo8Xp7+/T5y6OjAIDn4faHABBMcgWAYJIrAASTXAEgmOQKAMEkVwAIJrkCQDDJFQCCSa4AEExyBYBg/we7cE6NxWloxQAAAABJRU5ErkJggg==" alt="" />
order by 是指按照那个排序。desc是倒序排序
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAloAAACKCAIAAAD9mHO7AAAABmJLR0QA/wD/AP+gvaeTAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAIr0lEQVR4nO3drXbkNhsAYG3bCzNdvnxPeXnR5l7Ky0uHB5UEFeWUfOS7hoLZ+Ggt2ZZl+W/meVDiOPp57dE70njsn1/f3v/93///efs7AMCz+unoBgDA8aRDAJAOAUA6BIAgHQJAkA4BIEiHABCkQwAI0iEAhBB+2a2m2+3W/9x13WB7vGWfellpowNXUWx/iB3fQg8fsY06eLm4Xa7Bx9pvdth1XfaQ3DfGSWufeits18hzmujvdm9ilp4PcUue7QBVe/jBcaMOXi5ul2vwsU6xWHqJsezkzWvukFx4V3c+NHzfA8y6fTi6Ic18XyxNu9SPLOm773S0Shc/7xvLx837zrfbbXbn2XoLa1xUTr+xfPGhovyxX9uWPzGdKunvWNva9rf8fMiaOAmnj2+2C9NVlOw81qS6do4dx0GBs00Kc8d30/NwTfmFcVtTzrRrxa263ontD+mH2eG9t9mBcqA/HoOd4+2LTq+G9c4WUlFO34vuwxbl338tP9fXxyHuVNqecJr+TtcbPt6oxj3K7jkdn/Xnf8n+cX/r2pnqd1t/6Bc56jwvjFt1ObOuFbfqemdfL2kVl1a5WBpHp1VESg7zdL2DMbGkxon91/Srop2Df1lU1+Fn5J79TQvJVtpXvXVwmsR/h3Zu4ajjHldRXsjE633n+B8bt7T8kvH8DOPM1uqvLG1+WheWM1Hv0mZsenQbtvNUupFlzLb9bXVedSOTsLO5SjtTx57ni+I2sdv+8T8wbmPZbqw9YyYm2Rc1PzvswxRHKv11TSPKj0FJva3miEu3r2znxP63D4va38r0e8nBPq36G67zGiuJ/+BVc2bZF/iYtsd9HxsdhcvFLS6/oj0P6dPr2/vLy7fff/s1RIcwe0QHG+PQxHtmh850e6h6P1JY70R7Qu6Ql5QT/6kwc5eXn41tGrql/c1u75JLOcYOxHR/K86Hkv4uOh/WHMTC9iytetbYuFPSzjByHENynpc0vpu89KbwQDQ8z8vLL3yRzoZ66UG8YtxK4lCxvbwlV/L69v75y9fZ3W63W5pXmv8LKWF8APFB3OiAti3WWVfnqeL2eJ39Pjv8688/sn9e+Ra44h/hIW36imhVuJdtHXF7EIWzQwB4YPOX0gDAw5MOAUA6BADpEACCdAgAQToEgJCmw6t8s/Iq7TwbcQPIMjsEgOiJFvGkIb01X+zA7Vdp59m2h5G4pTsDPKnBXWmusph2lXaejbgBZFksBQD3LAUAs0MACNIhAATpEACCdAgAQToEgCAdAkCQDgEgSIcAEDzRYgcbNbWu2AvFDWBPZocNTCSY7W6Wnd6YG4Bq0uFah+TCOxkRoJVf5ncZEY/C8Yif3T5IDHs+YKi6nenPY/vHP8z2sW3c7g91ut1untYEsMZwdth1XcnA2o/Lg2wxtj3+tUku3KidhZWmya/70LY9R8UN4NlUXkozmD8NRthsIemUa42KS0LOkAmuGDeAZ1C/WDoxTB+edc5gbBmzbdz2XHYGeGCVl9L0k4yJxcbBRGR2/61tPTFKy0872zZuciFAK59e395fXr799ecf99/LR9h4aI73z24fFLt+HN+onfH2+/Ru8EO26vSjxImmtopbXQxlUIC817f3z1++Ht0KADiS7x0CgHQIANIhAATpEACCdAgAQToEgCAdAkCQDgEgVN/C+3BXaefZiBtAltkhAERPtMjeNjo7kzhw+1XaebbtYSRu6c4AT2pwz9KrLKZdpZ1nI24AWRZLAcATLQDA7BAAgnQIAEE6BIAgHQJAkA4BIEiHABCkQwAI0iEAhPiepXet7mZZXk58z7Dyet118+52uy0KgrgBZB0/O+y6zuhcx91HAVoZzg5bkeE2JRECtFWfDvsRuX+uUPogoT4pju1MnTTUAKwxTIeFWSrNf/0/Zkfq9FF8Sz/0qmsnA+IGkDX87HDr5+GtzIJxOeZGFcQNIGurzw7H3HOhOQoAp1J5ZWm/ImqqAcADqJ8dppfJpL/2Hyv2G9PF0uz+1a16EoIG0Njr2/vnL1+X/lc8LzRHBODq2iyWmpoAcGkNFksB4OqOv0kbABxOOgQA6RAApEMACNU3abt92KJNJXy7425pEMQNIGvVFy04lsQG0Mre9yylCYkQoK216TB+kOFgS/hxEjnxTCiW8rxDgLYqn3c42P/+iVT6HOBWj3Maq5elxA0ga+/nHbZylXaejbgBZPmiBQDsmA7d9RuA06q8lCZ9kGH/mPt4OW6Q81wA0ornHQI0Vve8w2o+uwLghHb63uHYty8A4Ax2SodSIABn5spSAJAOAUA6BIAgHQJAkA4BIEiHABDcwvvZiBtAltkhAERfw8/eBjM7kzhw+1XaebbtwW1OAaYN7ll6lcW0q7TzbMQNIMtiKQDs/kQLADghs0MAkA4BQDoEgCAdAkCQDgEgSIcAEKRDAAjSIQCEsXuWnv9ulhe66+agqYN7pM12YWz/peW0cqHIA5T7Pjvsx7j0ds/0KsKSzYXdh9kyx/ZfWk5DzhDgIV11sbRPA7tZnwtXFji2//6ZSUYEHs/3xdKlqaUfCvuHCmUX8dJZUfrr0kXaifLXlzNbftzxkvLPkwsX9Xdie7/l/nAMq6bAYxjODgs/GUp3SBfxQsFgXbFIOzEvXF/v2Pa+xnh9cqWlhUz0evZ/l/bX4jnwbH5IhxVXSSydH2SncYPBdwfT9d7nPdvVvv/UcE1/9zwuAEcZXllaN2VZM1wORurqchrW22ryN7GcuOfUMN6zVX/3P14AmxpeWRq2mRv1JXc/ftbY17XzolxJvWNxKI/PWOFjWeT2oXD/8mzUtr9yIfB4Pr2+vb+8fPv9t18Hf5ge7OLxMV15y/6pH0MHg+lEUbNV9/+VjvWzRU23M9ue/k8V68PZ/o5VPdaewnImmjFdfvl2uRB4NK9v75+/fD26FQBwpKt+7xAAGpIOAUA6BADpEACCdAgAQToEgBDCf7mOeeYPSE2DAAAAAElFTkSuQmCC" alt="" />
order by 1就是升序排序,也就是默认排序,正常排序
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAjoAAACcCAIAAAD58JZNAAAABmJLR0QA/wD/AP+gvaeTAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAJRElEQVR4nO3dvXbjuBUAYE0yD8Y2/fY522+/1fhdtt9+W/ZTpXGVyidNmjxDCtkcDMEfEAQpXuv7Kgum8UcKV4Ap8O/fX9/+89///fv1XzcAuKq/PboCALBOuAIgAOEKgACEKwAC+HpaSX3fDz93XTdKT1POKZedDjpxFdkOp9j5LfTpe+ygBjbPtu/7z3oKjnDe7KrruskTc09Mg8o55VY4rpLXtNDe4z5kbL0e0po82wmq9umHyIMaeFDwo9AlFgNDjDUXr15zD4lVd3XXQ8PPJXCovu+X31/LBzyt98XAvGuGd37+6TUfTfLFvXti+bh2P7hkarxabmGJm/IZEstXAyryn3vZNv+F6UhJe+fq1ra95dfDpIWLcPn8TjZhuYiSg+eqVFfPufM4ynC1Sre183vodbgn/8J+25PPsp39VveBjJ9mV/dOLOnK4XyMDk7TN53+huWuZlKRz9CK7sMR+d9flr+H9/dD2qi8PrfLtHe53Fv2cTXPbVTWZP/sv/5Ljk/bW1fP3HDY/lO/yaOu88J+q85n1c5+K8m87h3xuVUuBqanqlXPlly+y+WOxqySEheO39OuinqO/mRTWQ+/ss9sb57JZKFD0Ud3TpP+P6GeR3jUeU+LKM9k4f0etP+fTf2dgc0vu8J8FsrdWo1DL9CG9byUbmaZrm17W11X3cwk5mqi1DP32Ot8U78tHHap/l+Y/D259dnVcDmmV2T+ck8lysemknJbzbG2pu+s58Lx/YdN9W8lzz+vZPP23uK8V0v6f/SuubLJN/ictuf9HAedhU39Rp0v31/fXl6+/f7br7eZfxsORonpKU+PnBza8vTbz5fsphn9arkL9blNvVVK8kl/VRhZy/Of7Nu867a2dzK9y/7VP3cilttbcT2UtHfT9bDnJBbWZ2vRq+bG65J63mbO4y27zksq3y3emlF4Ihpe5+X5F75JV7t660ls1W9zg9KmTJ7R99e3f/zyz9XDhk8N5Sr+hJxu/ATSk3jQCW2brauuTpN+0/lz3mdXf/35x+Svd36ErPhD+JQOfUe0ytzbto5+O0nh7AoAHmj9VgsAeDjhCoAAhCsAAhCuAAhAuAIgAOEKgADG4SrKN9Si1PNq9BsQlNkVAAH82JE9/dCdb42VemB6lHpeLf0202/5wQAXNdrVIspiUZR6Xo1+A4KyGAhABPYMBOD6zK4ACEC4AiAA4QqAAIQrAAIQrgAIQLgCIADhCoAAhCsAArAj++EOqmpdtoH6DSBldtXAQgA4bjPZfONagE9MuNrrIbHqTsQCnsfX9UNmpKNkOiJPpo8G7jMfYFFdz/znuePTH1bb2Lbf7g8N6fve00CAz208u+q6rmTgG8bN0Wg+l56+bBKrDqpnYaF5cOo+tK3Po/oN4Goqb7UYzT9GI+BkJvmUZY+KWwauMFJH7DeAK6hfDFwYRh8eFa5gbpmubb+duawK8ECVt1oMH9IXFtNGH+RXjz/a0ROLPP+8sW37TawCnseX769vLy/f/vrzj/vr8hEwHTrT4yfTR9nuH2cPqmeafp8ejX6YLDr/V9ZCVVv1W10finBAVJ4mDMD1+d4VAAEIVwAEIFwBEIBwBUAAwhUAAQhXAAQgXAEQgHAFQACeJvxc9BsQlNkVAAH82JF9clvVyU/iD0yPUs+rpd9m+i0/GOCiRnsGRlksilLPq9FvQFAWAwGIwI7sAFyf2RUAAQhXAAQgXAEQgHAFQADCFQABCFcABCBcARCAcAVAAJU7svcfjqhTCZsJ3W3tBP0GBFU5u7I76hUIPMDz+Lp+CNcjUAHPZm+4GsbNYb6VjqTpJCx9aIUHWOyUPxME4HMbh6utIWQYN/u+H563NErcX8u5ctlKvwFBVd5q8XBR6nk1+g0Iyo3sAARwXrhKVwhvVqUA2KLyVosh5Ixutbin5PdfpC8tRu2X9qHwDzyFk58m7H8nAFQ46XtXc3e3A0CJk8KVEAXAHu4MBCAA4QqAAIQrAAIQrgAIYHyrRasv8ZTnU3fToC8b3W3dlVG/AUE9fnbVdZ3Rs45vsAHP46gb2UWgQwlUwLOpD1fpTkv5s6yGXy0fTB3bWQHPpvJ5VwvPWpwcSdPdBYcc9kQs0a6OfgOCOvt5V60e2GjvwTr6DQjqpE2YBsPG7SeXC0BolXcGjh5eBQCHqp9d5bdR5C/zx2Lli4Ee3VRBpwFPp+55V+m8yhwLgKO1WQz00R6AQzVYDASAoz1+EyYAWCVcARCAcAVAAMIVAAEIVwAEIFwBEMDZW9y2EqWeV6PfgKDMrgAI4MfXhJf3+ks9MD1KPa+WfrPNIBDdaM/AKItFUep5NfoNCMpiIAAR1O3IDgBnMrsCIADhCoAAhCsAAhCuAAhAuAIgAOEKgACEKwACEK4ACGB6z8Dr7yYXaNe7UVVHeyCtNmHu+K35tBKo54HP5H12NYxB+XaoDCq6ZTJWdR9W85w7fms+DblCgIeIuhg4DNOn2R+rdmY4d/z5kUPEAs73vhi4degfhqrhoRWTi1T5rCJ/uXURciH//fms5p82vCT/68SqTe1dSB9S7pu7WxUEzjHxNOFbwVicH5AvUt0KBtOKRciFedX+cufShxLT9bedtmay0OrVv93aXovDwNX8FK4q/ou+9fP15DRoNDieYLnc+7zhuNLPn1rtae+Z5wVgzvjOwLqP/HuGs9FIWp1Pw3JbTZ4WlsvOnFqlR7Zq7/nnC3hy4zsDb8fMLYacu5//1zWUdfKiU0m5c/1Q3j9zmc+N8v2HwuPLo0Xb9opVwPm+fH99e3n59vtvv45+sTwYpeNXvrI0+athjBsNdgtZrRY9/FU+Fq9mtVzPyfoMv6pY/5xs71zRc/UpzGehGsv5l6eLVcDZPE0YgOuL+r0rAJ6KcAVAAMIVAAEIVwAEIFwBEIBwBUAAwhUAAQhXAAQgXAEQgHAFQADCFQABCFcABCBcARCAcAVAAMIVAAEIVwAEIFwBEIBwBUAAwhUAAQhXAAQgXAEQgHAFQABfTyup7/vh567rRulpCgCMnDe76rpuMibdE9NgBgAjl1gMFLEAWPa+GJiHimEmlC7W5T+PDk7Tu64rX+i7H9z3vVVBAHI/za7uoaJkrjPEodHBafrWf0qZYwEwp3IxcDTZajIlcs8FAHPq7wzMlwf3EKsAWPB/j0kxUJwYVSkAAAAASUVORK5CYII=" alt="" />
备注:
where 子句的作用是在对查询结果进行分组前,将不符合where条件的行去掉,即在分组之前过滤数据,条件中不能包含聚组函数,使用where条件显示特定的行。
having 子句的作用是筛选满足条件的组,即在分组之后过滤数据,条件中经常包含聚组函数,使用having 条件显示特定的组,也可以使用多个分组标准进行分组。
having 子句被限制子已经在SELECT语句中定义的列和聚合表达式上。通常,你需要通过在HAVING子句中重复聚合函数表达式来引用聚合值,就如你在SELECT语句中做的那样。例如:
SELECT A COUNT(B) FROM TABLE GROUP BY A HAVING COUNT(B)>2