Celery异步任务框架(简单使用)

 

一:简介

1.Celery是什么

Celery是一个简单、灵活且可靠的,处理大量消息的分布式系统 专注于实时处理的异步任务队列 同时也支持任务调度

Celery 官网:http://www.celeryproject.org/

Celery 官方文档英文版:http://docs.celeryproject.org/en/latest/index.html

Celery 官方文档中文版:http://docs.jinkan.org/docs/celery/

PS:Celery在Windows系统上会出现不兼容的情况

2.Celery异步任务框架

 
1.可以不依赖任何服务器,通过自身命令,启动服务(内部支持socket)
2.celery服务为为其他项目服务提供异步解决任务需求的

注:会有两个服务同时运行,一个是项目服务,一个是celery服务,项目服务将需要异步处理的任务交给celery服务,celery就会在需要时异步完成项目的需求

人是一个独立运行的服务 | 医院也是一个独立运行的服务
正常情况下,人可以完成所有健康情况的动作,不需要医院的参与;但当人生病时,就会被医院接收,解决人生病问题
人生病的处理方案交给医院来解决,所有人不生病时,医院独立运行,人生病时,医院就来解决人生病的需求

3.Celery架构

Celery的架构由三部分组成,消息中间件(message broker)、任务执行单元(worker)和 任务执行结果存储(task result store)组成

Celery异步任务框架(简单使用)

 

 

消息中间件

 
Celery本身不提供消息服务,但是可以方便的和第三方提供的消息中间件集成。包括,RabbitMQ, Redis等等

任务执行单元

 
Worker是Celery提供的任务执行的单元,worker并发的运行在分布式的系统节点中。

任务结果存储

 
Task result store用来存储Worker执行的任务的结果,Celery支持以不同方式存储任务的结果,包括AMQP, redis等

使用场景

 
异步执行:解决耗时任务,将耗时操作任务提交给Celery去异步执行,比如发送短信/邮件、消息推送、音视频处理等等

延迟执行:解决延迟任务

定时执行:解决周期(周期)任务,比如每天数据统计

二:Celery的安装和使用

 
pip install celery

消息中间件:RabbitMQ/Redis

app=Celery(‘任务名’, broker=’xxx’, backend=’xxx’)

两种celery任务结构:提倡用包管理,结构清晰

 
# 如果 Celery对象:Celery(...) 是放在一个模块下的
# 1)终端切换到该模块所在文件夹位置:scripts
# 2)执行启动worker的命令:celery worker -A 模块名 -l info -P eventlet
# 注:windows系统需要eventlet支持,Linux与MacOS直接执行:celery worker -A 模块名 -l info
# 注:模块名随意

# 如果 Celery对象:Celery(...) 是放在一个包下的
# 1)必须在这个包下建一个celery.py的文件,将Celery(...)产生对象的语句放在该文件中
# 2)执行启动worker的命令:celery worker -A 包名 -l info -P eventlet
# 注:windows系统需要eventlet支持,Linux与MacOS直接执行:celery worker -A 模块名 -l info
# 注:包名随意

windows上启动celery正常,执行任务时报错

 
Traceback (most recent call last):
  File "c:\users\circle\appdata\local\programs\python\python37-32\lib\site-packages\billiard\pool.py", line 358, in workloop
    result = (True, prepare_result(fun(*args, **kwargs)))
  File "c:\users\circle\appdata\local\programs\python\python37-32\lib\site-packages\celery\app\trace.py", line 546, in _fast_trace_task
    tasks, accept, hostname = _loc
ValueError: not enough values to unpack (expected 3, got 0)

解决办法

 
安装 pip install eventlet
重新输入如下名命令
# celery_task是包名,包下必须要有一个叫celery的文件
celery worker -A celery_task -l info -P eventlet

方式一:在一个文件夹内的三个页面

worker执行页面
 
import celery

# broker存储的位置
broker = 'redis://127.0.0.1:6379/1'
# backend存储的位置
backend ='redis://127.0.0.1:6379/2'

# 实例化的celery对象
app=celery.Celery(name,broker=broker,backend=backend)

# 需要添加的任务
@app.task
defadd(x,y):
print(x*y)
return x+y

broker提交任务的页面
 
from celery_test import add
# 执行这个文件,就是把这个任务添加到数据库中,只要worker在工作
# 就会把这个任务从数据库1中拿出来执行,并把结果放到数据库2中
ret = add.delay(3,4)
# ret 是这个任务的uuid,用于获取任务结果
backend获取任务结果的页面
 
from celery_test import app

from celery.result import AsyncResult
# 任务对象的唯一标识:uuid
id = '19dc2faa-39f9-47b6-af77-e9d3a4d05d2e'
if name == 'main':
async1 = AsyncResult(id=id, app=app)
if async1.successful():
result = async1.get()
print(result)
elif async1.failed():
print('任务失败')
elif async1.status == 'PENDING':
print('任务等待中被执行')
elif async1.status == 'RETRY':
print('任务异常后正在重试')
elif async1.status == 'STARTED':
print('任务已经开始被执行')

方式二:worker单独做一个项目文件,添加任务和获取结果分离出来(执行异步任务)

创建一个celery项目(包),内部必须含有名字为celery的py文件,在内部创建celery对象

celery.py
 
import celery

broker = 'redis://127.0.0.1:6379/1'
backend ='redis://127.0.0.1:6379/2'

app=celery.Celery(name,broker=broker,backend=backend,include=['celery_task.task1','celery_task.task2'])

编写需要添加的任务也在这个包内,可创建不同的任务文件,可添加多个
task1.py
 
from .celery import app

@app.task
defadd(x,y):
print(x,y)
return x+y

执行延迟任务

添加任务页面
 
# 执行延迟任务就是多个一个时间参数
# 这里注意,时间参数是根据utc时间,并不是中国时间

from datetime import datetime, timedelta
# 时间对象必须和时间对象相加
eta=datetime.utcnow() + timedelta(seconds=10)
add.apply_async(args=(200, 50), eta=eta)

添加定时任务

celery页面
 
# 时区
app.conf.timezone = 'Asia/Shanghai'
# 是否使用UTC
app.conf.enable_utc = False

# 任务的定时配置
from datetime import timedelta
from celery.schedules import crontab
app.conf.beat_schedule = {
'low-task': {
'task': 'celery_task.tasks.low',
'schedule': timedelta(seconds=3),
# 'schedule': crontab(hour=8, day_of_week=1), # 每周一早八点
'args': (300, 150),
}
}

# 定时任务的添加必须要新启动一个beat命令去工作
# celery beat -A celery_task -l info

三:Django中使用Celery

1.celery.py

 
# 加载django配置环境
import os
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'luffyapi.settings.dev')
# 实例化Celery,获取worker对象,include添加可处理的任务函数
from celery import Celery
broker = 'redis://127.0.0.1:6379/0'  # 数据存储位置
backend = 'redis://127.0.0.1:6379/1' # 返回值存储位置
app = Celery(__name__, broker=broker, backend=None, include=['celery_task.tasks'])

# 时区
app.conf.timezone = 'Asia/shanghai'
# 是否使用utc时间
app.conf.enable_utc = False

# 任务的定时配置
from datetime import timedelta
from celery.schedules import crontab

app.conf.beat_schedule = {
'update-banner-list': {
'task': 'celery_task.tasks.update_banner_list',
'schedule': timedelta(seconds=5),
'args': (),
}
}

2.task.py

 
from .celery import app
from django.core.cache import cache
from django.conf import settings
from home import serializer, models

@app.task
defupdate_banner_list():
queryset = models.Banner.objects.filter(is_delete=False, is_show=True).order_by('-display_order')[:settings.BANNER_COUNT]
ser = serializer.BannerModelSerializer(instance=queryset, many=True)
banner_list = ser.data
for banner in banner_list:
banner['banner_url'] = 'http://127.0.0.1:8000%s' % banner['banner_url']
cache.set('banner_list', banner_list, 606024)
return True

上一篇:[Celery分布式的异步任务框架]


下一篇:查看python第三方库的依赖