spark streaming之 windowDuration、slideDuration、batchDuration​

spark streaming 不同于sotm,是一种准实时处理系统。storm 中,把批处理看错是时间教程的实时处理。而在spark streaming中,则反过来,把实时处理看作为时间极小的批处理。

1、三个时间参数

spark streaming 中有三个关于时间的参数,分别如下:

窗口时间windowDuration​:当前窗口要统计多长时间的数据,是批量时间的整数倍

滑动时间slideDuration​:要多长时间更新一次结果,是批量时间的整数倍

批量时间batchDuration​:多长时间创建一个批次,与实际业务无关,只与数据量有关,数据量大则可以设置短一些,数据量小则设置长一些,但必须小于其他两个时间,

2、该怎么设置?

为方便理解,就拿咱们最常见的日启、日活、周启、周活作为示例

注:1、实际中日启、日活、周启、周活更多是用批处理,此处只是拿来方便大家理解

      2、此处不是严格意义上的日启、周启。此处的日:最近24小时,周:最近7天

案例1:每隔一小时,统计产品的日启、日活,

窗口时间:1日,滑动时间:1小时,批量时间:1小时、半小时、15分钟、10分钟、5分钟、2分钟均可,视数据量大小而定

案例2:每天统计最近七天累计启动、活跃

窗口时间:7日,滑动时间:1日 批量时间:一小时、半小时、10分钟、5分钟

3、实战

为了理解上边参数是怎么设置的,我们对假定现在有个需求,需要对输入的字母进行计数。

使用nc -lk 9999 模拟生产者,发送数据,streaming 通过socket接收数据

实战1:每10秒统计当前输入的字符

适用:彻底非累加业务

  import org.apache.spark.streaming.{Minutes, Seconds, StreamingContext}
  import org.apache.spark.SparkConf

  val sparkConf = new SparkConf().setAppName("socket-streaming-wordcount").setMaster("local[2]")
  //10秒创建一个批次
  val ssc = new StreamingContext(sparkConf, Seconds(10))
  val lines = ssc.socketTextStream("localhost", 9999)
    val wordCounts = lines.flatMap(_.split(" ")).map(x => (x, 1l))
    val current_stream = wordCounts.reduceByKey(_ + _)
    current_stream.print()
    current_stream.repartition(1).saveAsTextFiles("/data/socket_wordcount_current.")

    ssc.start()
    ssc.awaitTermination()

启动生产者 nc -lk 9999

在spark-shell中输入上边代码

在nc 的终端下, 

输入字符操作1、第一个10秒,输入a,第二个10秒输入b,等待10秒,在spark-shell中确认第二次计算完成后,查看新产生文件,期望结果   【    (a,1) (b,1) 】  原因:我们当前仅输入了a、b 

输入字符操作2、第四个10秒,输入c,第五个10秒输入d,等待10秒,在spark-shell中确认第二次计算完成后,查看新产生文件   期望 【 (c,1) (d,1)】 原因:我们当前输入了c、d

输入字符操作3、这时,不需要操作,等待30秒,在spark-shell中确认第三次计算完成后,查看新产生文件 期望 【 】 原因:当前我们没有输入, 所以没有任何字符可以统计

实战2、每10秒统计历史所有输入的字符。

适用范围:计算历史(包含窗口之外)累计数据,经常用于统计“总装机量”之类 

import org.apache.spark.streaming.{Minutes, Seconds, StreamingContext}
import org.apache.spark.SparkConf

val sparkConf = new SparkConf().setAppName("socket-streaming-wordcount").setMaster("local[2]")
  //10秒创建一个批次
  val ssc = new StreamingContext(sparkConf, Seconds(10))
//累加所有经过的数据
    val updateFunc = (values: Seq[Long], state: Option[Long]) => {
      val currentCount = values.foldLeft(0l)(_ + _)
      val previousCount = state.getOrElse(0l)
      Some(currentCount + previousCount)
    }
    ssc.checkpoint("socket_wordcount_history")
    val lines = ssc.socketTextStream("localhost", 9999)
    val wordCounts = lines.flatMap(_.split(" ")).map(x => (x, 1l))
    val history_stream = wordCounts.updateStateByKey[Long](updateFunc)//合并当前数据和历史数据

    history_stream.print()
    history_stream.repartition(1).saveAsTextFiles("/data/socket_wordcount_history.")

    ssc.start()
    ssc.awaitTermination()

 启动生产者 nc -lk 9999

在spark-shell中输入上边代码

在nc 的终端下, 

输入字符操作1、第一个10秒,输入a,第二个10秒输入b,等待10秒,在spark-shell中确认第二次计算完成后,查看新产生文件,期望结果   【    (a,1) (b,1) 】  原因:我们当前输入了a、b 

输入字符操作2、第四个10秒,输入c,第五个10秒输入d,等待10秒,在spark-shell中确认第二次计算完成后,查看新产生文件   期望 【 (a,1) (b,1) (c,1) (d,1)】 原因:我们当前输入了c、d,历史输入过 a、b

输入字符操作3、这时,不需要操作,等待30秒,在spark-shell中确认第三次计算完成后,查看新产生文件 期望 【 (a,1) (b,1) (c,1) (d,1)】 原因:当前我们没有输入,但是,历史曾经输入过a、b、c、d  

输入字符操作4、这时,仍不需要操作,等待30秒,在spark-shell中确认第四次计算完成后,查看新产生文件 期望 【 (a,1) (b,1) (c,1) (d,1)】原因: 当前我们没有输入,但是,历史曾经输入过a、b、c、d 

之后,即使没有输入abcd,统计结果仍包含abcd这四个字符各1次

 

实战3、每隔30秒,统计最近1分钟输入的字母。窗口内历史累加

(适用范围:非累加业务,这里的累加指的是超出window范围)

sc.stop

import org.apache.spark.streaming.{Minutes, Seconds, StreamingContext}import org.apache.spark.SparkConf

val updateFunc = (values: Seq[Long], state: Option[Long]) => {
val currentCount = values.foldLeft(0l)(_ + _)
val previousCount = state.getOrElse(0l) 
Some(currentCount + previousCount)
}
val sparkConf = new SparkConf().setAppName("socket-streaming-wordcount").setMaster("local[2]")
val ssc = new StreamingContext(sparkConf, Seconds(10))   //10秒创建一个批次
ssc.checkpoint("socket-kafka-wordcount_recent")
val lines = ssc.socketTextStream("localhost", 9999)
val words = lines.flatMap(_.split(" "))
val wordCounts = words.map(x => (x, 1l))
val stateDstream = wordCounts.reduceByKeyAndWindow(_ + _, _ - _, Minutes(1), Seconds(30))  //每30秒算一次,数据范围为最近一分钟内收到的数据  另外,使用window时,需要设置checkpoint

stateDstream.print()
stateDstream.repartition(1).saveAsTextFiles("/data/socket-streaming-wordcount.log")

ssc.start()
ssc.awaitTermination()

启动生产者 nc -lk 9999

在spark-shell中输入上边代码

在nc 的终端下,

输入字符操作1、第一个10秒,输入a,第二个10秒输入b,等待10秒,在spark-shell中确认第二次计算完成后,查看新产生文件,期望结果   【    (a,1) (b,1) 】  原因:最近1分钟,我们只输入了a、b

输入字符操作2、第四个10秒,输入c,第五个10秒输入d,等待10秒,在spark-shell中确认第二次计算完成后,查看新产生文件   期望 【 (a,1) (b,1) (c,1) (d,1)】 原因:最近1分钟,我们只输入了a、b、c、d

输入字符操作3、这时,不需要操作,等待30秒,在spark-shell中确认第三次计算完成后,查看新产生文件 期望 【 (a,0) (b,0) (c,1) (d,1)】 原因:最近1分钟,我们只输入了c、d ,1分钟之前输入的a、b将不再在统计范围之内

输入字符操作4、这时,仍不需要操作,等待30秒,在spark-shell中确认第四次计算完成后,查看新产生文件 期望 【 (a,0) (b,0) (c,0) (d,0)】原因:最近1分钟,我们没有任何输入,1 分钟之前输入的a、b、c、d将不再在统计范围之内

 

转载于:https://www.cnblogs.com/piaolingzxh/p/5468780.html

 

END

上一篇:生成视频时如何在线传输视频以及失败的CGI方法


下一篇:SparkStreaming源码阅读思路