predict_proba返回的是一个 n 行 k 列的数组, 第 i 行 第 j 列上的数值是模型预测 第 i 个预测样本为某个标签的概率,并且每一行的概率和为1。 predict返回对应的分类
# conding :utf-8
from sklearn.linear_model import LogisticRegression
import numpy as np
x_train = np.array([[1,2,3],
[1,3,4],
[2,1,2],
[4,5,6],
[3,5,3],
[1,7,2]])
y_train = np.array([3, 3, 3, 2, 2, 2])
x_test = np.array([[2,2,2],
[3,2,6],
[1,7,4]])
clf = LogisticRegression()
clf.fit(x_train, y_train)
# 返回预测标签
print(clf.predict(x_test))
# 返回预测属于某标签的概率
print(clf.predict_proba(x_test))
# [2 3 2]
# [[0.56651809 0.43348191]
# [0.15598162 0.84401838]
# [0.86852502 0.13147498]]
# 分析结果:
# 预测[2,2,2]的标签是2的概率为0.56651809,3的概率为0.43348191
#
# 预测[3,2,6]的标签是2的概率为0.15598162,3的概率为0.84401838
#
# 预测[1,7,4]的标签是2的概率为0.86852502,3的概率为0.13147498
a flying bird 发布了149 篇原创文章 · 获赞 415 · 访问量 54万+ 关注