- 导入相应的模块
from keras.applications.vgg16 import VGG16
from keras.models import Sequential
from keras.layers import Conv2D,MaxPool2D,Activation,Dropout,Flatten,Dense
from keras.optimizers import SGD
from keras.preprocessing.image import ImageDataGenerator,img_to_array,load_img
import numpy as np
import json
import warnings
warnings.filterwarnings("ignore")
import os
- 设定配置参数
batch_size = 32
train_data = 'data/train/'
test_data = 'data/test/'
image_w = 150
image_h = 150
- 导入vgg16模型
vgg16_model = VGG16(weights='imagenet',include_top=False, input_shape=(image_w,image_h,3))
- 构建全连接层
# 搭建全连接层
top_model = Sequential()
top_model.add(Flatten(input_shape=vgg16_model.output_shape[1:]))
top_model.add(Dense(256,activation='relu'))
top_model.add(Dropout(0.5))
top_model.add(Dense(10,activation='softmax'))
model = Sequential()
model.add(vgg16_model)
model.add(top_model)
- 制作图像数据生成器对象
train_datagen = ImageDataGenerator(
rotation_range = 40, # 随机旋转度数
width_shift_range = 0.2, # 随机水平平移
height_shift_range = 0.2,# 随机竖直平移
rescale = 1/255, # 数据归一化
shear_range = 20, # 随机错切变换
zoom_range = 0.2, # 随机放大
horizontal_flip = True, # 水平翻转
fill_mode = 'nearest', # 填充方式
)
test_datagen = ImageDataGenerator(
rescale = 1/255, # 数据归一化
)
- 生成数据生成器
# 生成训练数据
train_generator = train_datagen.flow_from_directory(
train_data,
target_size=(image_w,image_h),
batch_size=batch_size,
)
# 测试数据
test_generator = test_datagen.flow_from_directory(
test_data,
target_size=(image_w,image_h),
batch_size=batch_size,
)
- 获取类别标签
label = train_generator.class_indices
- 将标签字典的键值逆置方便后续查找
label = dict(zip(label.values(), label.keys()))
file = open('label.json','w',encoding='utf-8')
json.dump(label,file)
- 定义优化器,代价函数,训练过程中计算准确率
model.compile(optimizer=SGD(lr=1e-3,momentum=0.9),loss='categorical_crossentropy',metrics=['accuracy'])
model.fit_generator(train_generator,steps_per_epoch=len(train_generator),epochs=50,validation_data=test_generator,validation_steps=len(test_generator))
- 保存模型
model.save('model_vgg16_dog.h5')
测试
- 导入相应的模块
from keras.models import load_model
from keras.preprocessing.image import img_to_array, load_img
import json
import numpy as np
import matplotlib.pyplot as plt
- 读取标签和载入模型
file = open('label.json','r',encoding='utf-8')
label = json.load(file)
# 载入模型
model = load_model('model_vgg16_dog.h5')
- 封装测试函数
def predict(image):
# 导入图片
image = load_img(image)
plt.imshow(image)
image = image.resize((150,150))
image = img_to_array(image)
image = image/255
image = np.expand_dims(image,0)
plt.title(label[str(model.predict_classes(image)[0])])
plt.axis('off')
plt.show()
传入图像路径测试
predict('data/test/n02093056-bullterrier/Niutougeng-is09aa7re.jpg')