【笔记】「pj复习」深搜——简单剪枝

深搜——简单剪枝

说在最前面:

因为马上要 NOIP2020 了,所以菜鸡开始了复习qwq。

pj 组 T1 ,T2 肯定要拿到满分的,然后 T3 , T4 拿部分分, T3 拿部分分最常见的做法就是暴搜,但是暴搜容易 T ,为了拿到更多的分数,应该合理剪枝。

各种剪枝方法

  1. 优化搜索顺序

(随缘)随缘剪枝。

  1. 可行性剪枝

对当前状态进行检查,发现分支无法到达递归边界,回溯。

  1. 最优化剪枝 ☆☆☆ ← 最重要的一种剪枝方法

在最优化问题的搜索过程中,若当前花费的代价已超过前面搜到的最优解,回溯。

  1. 上下界剪枝

按题意,找子节点的上下界。

例题

例一:洛谷 P1135 奇怪的电梯

\(\rm\Large Link\)

这道题当然 bfs 效率是最快的,但是为了练习剪枝,就可以拿 dfs 做。

思路很简单,从起点开始,只要没越界就向上下搜,全部搜完得到答案。

很容易就得到了代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<string>
#define line cout << endl
using namespace std;
const int NR = 205;
int n, a, b;
int k[NR];
int ans = 1e9;
bool flag[NR];
void dfs(int x, int step) {
if (x < 1 || x > n || flag[x]) {
return;
}
if (x == b) {
if (step < ans) ans = step;
return;
}
flag[x] = true;
dfs(x + k[x], step + 1);
dfs(x - k[x], step + 1);
flag[x] = false;
}
int main() {
cin >> n >> a >> b;
for (int i = 1; i <= n; i++) {
cin >> k[i];
}
dfs(a, 0);
if (ans == 1e9) cout << "-1";
else cout << ans;
return 0;
}

很好,发现得分 \(80pts\) 。有两个点 T 了。

所以我们就需要剪枝。

怎么剪枝?

我们要球的是最优解,所以就可以用 最优剪枝 ,如果当前的 \(step\) 已经超过了最优解 \(ans\) ,那么就可以结束了,这样就剪枝成功,最后放上 \(dfs\) 代码:

void dfs(int x, int step) {
if (x < 1 || x > n || flag[x] || step >= ans) {
return;
}
if (x == b) {
if (step < ans) ans = step;
return;
}
flag[x] = true;
dfs(x + k[x], step + 1);
dfs(x - k[x], step + 1);
flag[x] = false;
}

当然了,这题如果拿 \(bfs\) 做肯定是不会 T 的,但是为了练习剪枝嘛~ qwq

例二:洛谷 P1731 [NOI1999]生日蛋糕

\(\rm\Large Link\)

这道题是有一定难度的,需要运用各种高科技剪枝(?

如果泥能独立 AC 这道题,就可以拿到 NOI 铜牌了! (不过是1999年的,现在肯定难多了

其实这道题根本不需要考虑 \(\pi\) 因为:

\[\begin{aligned}
V_{\text{圆柱}} & = S_{\text{圆柱}} \times h\\
&= \pi r^2\times h\\
N & = r^2\times h
\end{aligned}\]
\[\begin{aligned}
S_{\text{圆柱侧}} & = 2\pi r \times h\\
S &= 2rh\\
S &= \frac{2N}{r}
\end{aligned}\]

因为为了方便,搜索的参数为 \(5\) 个:

\(\text{dfs(int ceng, int nestv, int r, int h, int s);}\)

\(\text{ceng = 当前层数, nestv = 剩余体积, r = 半径, h = 高度, s = 体积}\)

体积为 \(100\) 的栗子:画张图,更好理解:

【笔记】「pj复习」深搜——简单剪枝

去搜每一层蛋糕的半径和高度。因为是整数,所以把所有的半径和高度枚举一遍, \(r\) 的根节点从 \(10\) 开始。从最大值到最小值,如果体积明显超出了,就可以剪枝。

枚举第一层蛋糕的高度。

此时的时间复杂度是 \(O(n^2)\)

因为比较暴力,所以必须用到各种剪枝,在 \(O(n^2)\) 的基础上进行剪枝

  1. 可行性剪枝

  2. 最优化剪枝

  3. 上下界剪枝

  4. 搜索顺序剪枝

    半径从大到小,从小到大。

    高度从大到小,从小到大。

    共 4 种搜索顺序,找到最快的顺序。

最终就能 AC 本题啦~

放上 \(dfs\) 代码,有注释应该很好理解吧/kk:

void dfs(int ceng, int restv, int r, int h, int s) {
//ceng为已用层数,restv为剩余体积,r为当前最高层蛋糕半径,h为当前最高层蛋糕高度,s为已有表面积/π
if(ceng == m && restv == 0) //蛋糕已完成,即层数ceng==m且体积用完 {
ans = min(ans, s); //更新答案为最优解
return;
}
if(restv < 0) return; //剩余体积小于0表示体积超过了预定的值
if(s + 2 * restv / r >= ans) return; //若当前总表面积+该层往上所有表面积的最小和>=目前最优解
//简单一点可以把每一层的侧面积看做最小的1,那么后续剩下部分的侧面积就等于剩余层数m-ceng
//数据严格一点就可以从剩余体积去计算出剩余最小侧面积2 * restv / r,可改为if(s + 2 * restv / r >= ans)
if(r * r * h * (m - ceng) < restv) return; //后续能做出蛋糕的最大体积<当前剩余体积
for(int i = r - 1; i >= m - ceng; i--) //枚举下一层所有可能的半径
for(int j = h - 1; j >= m - ceng; j--) //枚举下一层所有可能的高度
if(ceng != 0) dfs(ceng + 1, restv - i * i * j, i, j, s + 2 * i * j);
else dfs(ceng + 1, restv - i * i * j, i, j, s + 2 * i * j + i * i);
//第一层需要计算上表面积,其他层只需计算侧面积即可,故需分类讨论
}

好啦!窝拿到 NOI 铜牌啦啊!(雾

上一篇:nyoj 最少步数


下一篇:web常见效果之轮播图