BZOJ_3307_雨天的尾巴_线段树合并
Description
N个点,形成一个树状结构。有M次发放,每次选择两个点x,y
对于x到y的路径上(含x,y)每个点发一袋Z类型的物品。完成
所有发放后,每个点存放最多的是哪种物品。
Input
第一行数字N,M
接下来N-1行,每行两个数字a,b,表示a与b间有一条边
再接下来M行,每行三个数字x,y,z.如题
Output
输出有N行
每i行的数字表示第i个点存放最多的物品是哪一种,如果有
多种物品的数量一样,输出编号最小的。如果某个点没有物品
则输出0
类似天天爱跑步,树上差分,在每个点的线段树上修改,然后自下向上合并上去。
然后线段树怎么搞。。维护全局众数,需要同时维护众数是谁以及众数出现了多少次。
注意由于我们把叶子结点当作这个数出现的次数,线段树合并到底时需要加上这个数的个数。
对于无解的情况要判掉,即众数出现的次数为0,因为可能左右的众数都不为0但出现次数为0。
然后这题我迷之TLE,然后把权值离散化才卡过的???
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define N 100050
#define maxn m
int t[N*60],n,m,head[N],to[N<<1],nxt[N<<1],cnt,tot,mx[N*60],xx[N],yy[N],zz[N];
int fa[N],top[N],son[N],siz[N],dep[N],root[N],ls[N*60],rs[N*60],ans[N],v[N];
inline void add(int u,int v) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt;
}
void dfs1(int x,int y) {
int i; siz[x]=1; fa[x]=y; dep[x]=dep[y]+1;
for(i=head[x];i;i=nxt[i]) {
if(to[i]!=y) {
dfs1(to[i],x);
siz[x]+=siz[to[i]];
if(siz[to[i]]>siz[son[x]]) son[x]=to[i];
}
}
}
void dfs2(int x,int t) {
top[x]=t;
if(son[x]) dfs2(son[x],t);
int i;
for(i=head[x];i;i=nxt[i]) {
if(to[i]!=son[x]&&to[i]!=fa[x]) {
dfs2(to[i],to[i]);
}
}
}
int lca(int x,int y) {
while(top[x]!=top[y]) {
if(dep[top[x]]>dep[top[y]]) swap(x,y);
y=fa[top[y]];
}
return dep[x]<dep[y]?x:y;
}
void pushup(int p) {
if(t[ls[p]]>=t[rs[p]]) mx[p]=mx[ls[p]],t[p]=t[ls[p]];
else mx[p]=mx[rs[p]],t[p]=t[rs[p]];
}
int merge(int l,int r,int x,int y) {
if(!x) return y;
if(!y) return x;
if(l==r) {
t[x]+=t[y]; return x;
}
int mid=(l+r)>>1;
ls[x]=merge(l,mid,ls[x],ls[y]);
rs[x]=merge(mid+1,r,rs[x],rs[y]);
pushup(x);
return x;
}
void update(int l,int r,int x,int v,int &p) {
if(!p) p=++tot;
if(l==r) {
t[p]+=v; mx[p]=l; return ;
}
int mid=(l+r)>>1;
if(x<=mid) update(l,mid,x,v,ls[p]);
else update(mid+1,r,x,v,rs[p]);
pushup(p);
}
void dfs3(int x) {
int i;
for(i=head[x];i;i=nxt[i]) {
if(to[i]!=fa[x]) {
dfs3(to[i]);
root[x]=merge(1,maxn,root[x],root[to[i]]);
}
}
if(t[root[x]]) ans[x]=v[mx[root[x]]];
}
int main() {
scanf("%d%d",&n,&m);
int i,x,y,z;
for(i=1;i<n;i++) {
scanf("%d%d",&x,&y); add(x,y); add(y,x);
}
dfs1(1,0);
dfs2(1,1);
for(i=1;i<=m;i++) {
scanf("%d%d%d",&xx[i],&yy[i],&zz[i]);
v[i]=zz[i];
}
sort(v+1,v+m+1);
for(i=1;i<=m;i++) {
zz[i]=lower_bound(v+1,v+m+1,zz[i])-v,x=xx[i],y=yy[i];
int l=lca(x,y);
update(1,maxn,zz[i],1,root[x]);
update(1,maxn,zz[i],1,root[y]);
update(1,maxn,zz[i],-1,root[l]);
if(fa[l]) update(1,maxn,zz[i],-1,root[fa[l]]);
}
dfs3(1);
for(i=1;i<=n;i++) {
printf("%d\n",ans[i]);
}
}
/*
1<=N,M<=100000
1<=a,b,x,y<=N
1<=z<=10^9
*/