前言
最近项目中需要将业务对象直接序列化,然后存数据库;考虑到序列化、反序列化的时间以及生产文件的大小觉得Protobuf是一个很好的选择,但是Protobuf有的问题就是需要有一个.proto的描述文件,而且由Protobuf生成的对象用来作为业务对象并不是特别友好,往往业务对象和Protobuf对象存在一个互相转换的过程;考虑到我们仅仅是将业务对象直接序列化到数据库,发现Protobuf在这种情况下并不是特别的好;
这时候发现了Protostuff,protostuff不需要依赖.proto文件,可以直接对普通的javabean进行序列化、反序列化的操作,而效率上甚至比protobuf还快,生成的二进制数据库格式和Protobuf完全相同的,可以说是一个基于Protobuf的序列化工具。
简单测试
1.先测试一下Protostuff
提供一个简单的javabean
1
2
3
4
5
6
7
8
|
public class Person {
private int id;
private String name;
private String email;
// get/set方法省略
} |
测试类PbStuff
1
2
3
4
5
6
7
8
9
10
11
12
13
|
public class PbStuff {
public static void main(String[] args) throws FileNotFoundException,
IOException {
Schema<Person> schema = RuntimeSchema.getSchema(Person. class );
Person person1 = new Person();
person1.setId( 1 );
person1.setName( "zhaohui" );
LinkedBuffer buffer = LinkedBuffer.allocate( 1024 );
byte [] data = ProtobufIOUtil.toByteArray(person1, schema, buffer);
System.out.println(data.length);
}
} |
序列化之后二进制的大小为29字节
2.测试Protobuf
proto文件
1
2
3
4
5
6
7
8
|
option java_package = "protobuf.clazz" ;
option java_outer_classname = "PersonX" ;
message Person { required int32 id = 1 ;
required string name = 2 ;
required string email = 3 ;
} |
PBTest类
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
public class PBTest {
public static void main(String[] args) {
PersonX.Person.Builder builder = PersonX.Person.newBuilder();
builder.setId( 1 );
builder.setName( "zhaohui" );
builder.setEmail( "xxxxxxxx@126.com" );
PersonX.Person p = builder.build();
byte [] result = p.toByteArray();
System.out.println(result.length);
}
} |
序列化之后二进制的大小同样也是29字节
经过简单的测试:发现Protobuf和Protostuff序列化相同的数据得到的结果是一样的
Protobuf的编码是尽其所能地将字段的元信息和字段的值压缩存储,并且字段的元信息中含有对这个字段描述的所有信息;既然Protostuff序列化之后的大小和Protobuf是一样的,那可以分析一下Protostuff的源码
源码分析
1.Schema
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
/** * Gets the schema that was either registered or lazily initialized at runtime.
* <p>
* Method overload for backwards compatibility.
*/
public static <T> Schema<T> getSchema(Class<T> typeClass)
{ return getSchema(typeClass, ID_STRATEGY);
} /** * Gets the schema that was either registered or lazily initialized at runtime.
*/
public static <T> Schema<T> getSchema(Class<T> typeClass,
IdStrategy strategy)
{ return strategy.getSchemaWrapper(typeClass, true ).getSchema();
} |
getSchema方法中指定了获取Schema的默认策略类ID_STRATEGY,ID_STRATEGY在类RuntimeEnv中进行了实例化:
1
|
ID_STRATEGY = new DefaultIdStrategy();
|
可以大致看一下DefaultIdStrategy类:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
public final class DefaultIdStrategy extends IdStrategy
{ final ConcurrentHashMap<String, HasSchema<?>> pojoMapping = new ConcurrentHashMap<>();
final ConcurrentHashMap<String, EnumIO<?>> enumMapping = new ConcurrentHashMap<>();
final ConcurrentHashMap<String, CollectionSchema.MessageFactory> collectionMapping = new ConcurrentHashMap<>();
final ConcurrentHashMap<String, MapSchema.MessageFactory> mapMapping = new ConcurrentHashMap<>();
final ConcurrentHashMap<String, HasDelegate<?>> delegateMapping = new ConcurrentHashMap<>();
...
} |
可以发现DefaultIdStrategy内存缓存了很多Schema信息,不难理解既然要或者业务对象的类和字段信息,必然用到反射机制,这是一个很耗时的过程,进行缓存很有必要,这样下次遇到相同的类就可以不用进行反射了
所以可以看到DefaultIdStrategy中有很多这种模式的方法:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
public <T> HasSchema<T> getSchemaWrapper(Class<T> typeClass, boolean create)
{
HasSchema<T> hs = (HasSchema<T>) pojoMapping.get(typeClass.getName());
if (hs == null && create)
{
hs = new Lazy<>(typeClass, this );
final HasSchema<T> last = (HasSchema<T>) pojoMapping.putIfAbsent(
typeClass.getName(), hs);
if (last != null )
hs = last;
}
return hs;
}
|
先get,如果为null,就putIfAbsent
当业务对象的Schema还没被缓存,这时候就会去create,RuntimeSchema提供了createFrom方法:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
public static <T> RuntimeSchema<T> createFrom(Class<T> typeClass,
Set<String> exclusions, IdStrategy strategy)
{ final Map<String, java.lang.reflect.Field> fieldMap = findInstanceFields(typeClass);
...省略
final Field<T> field = RuntimeFieldFactory.getFieldFactory(
f.getType(), strategy).create(fieldMapping, name, f,
strategy);
fields.add(field);
}
}
return new RuntimeSchema<>(typeClass, fields, RuntimeEnv.newInstantiator(typeClass));
}
|
主要就是对typeClass进行反射,然后进行封装;将字段类型封装成了RuntimeFieldFactory,最后通过RuntimeFieldFactory的create方法封装进入Field类中,RuntimeFieldFactory列举了所有支持的类型:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
static final RuntimeFieldFactory<BigDecimal> BIGDECIMAL;
static final RuntimeFieldFactory<BigInteger> BIGINTEGER;
static final RuntimeFieldFactory<Boolean> BOOL;
static final RuntimeFieldFactory<Byte> BYTE;
static final RuntimeFieldFactory<ByteString> BYTES;
static final RuntimeFieldFactory< byte []> BYTE_ARRAY;
static final RuntimeFieldFactory<Character> CHAR;
static final RuntimeFieldFactory<Date> DATE;
static final RuntimeFieldFactory<Double> DOUBLE;
static final RuntimeFieldFactory<Float> FLOAT;
static final RuntimeFieldFactory<Integer> INT32;
static final RuntimeFieldFactory<Long> INT64;
static final RuntimeFieldFactory<Short> SHORT;
static final RuntimeFieldFactory<String> STRING;
static final RuntimeFieldFactory<Integer> ENUM;
static final RuntimeFieldFactory<Object> OBJECT;
static final RuntimeFieldFactory<Object> POJO;
static final RuntimeFieldFactory<Object> POLYMORPHIC_POJO;
static final RuntimeFieldFactory<Collection<?>> COLLECTION =
new RuntimeFieldFactory<Collection<?>>(ID_COLLECTION)
|
当然还有常用的Map类型,在RuntimeMapFieldFactory中定义了
2.LinkedBuffer buffer = LinkedBuffer.allocate(1024);
开辟了1024字节缓存,用来存放业务对象序列化之后存放的地方,当然你可能会担心这个大小如果不够怎么办,后面的代码中可以看到,如果空间不足,会自动扩展的,所有这个大小要设置一个合适的值,设置大了浪费空间,设置小了会自动扩展浪费时间。
3.byte[] data = ProtobufIOUtil.toByteArray(person1, schema, buffer);
ProtobufIOUtil提供的就是以Protobuf编码的格式来序列化业务对象
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
public static <T> byte [] toByteArray(T message, Schema<T> schema, LinkedBuffer buffer)
{ if (buffer.start != buffer.offset)
throw new IllegalArgumentException( "Buffer previously used and had not been reset." );
final ProtobufOutput output = new ProtobufOutput(buffer);
try
{
schema.writeTo(output, message);
}
catch (IOException e)
{
}
return output.toByteArray();
} |
schema中调用writeTo方法,将message中的消息保存到ProtobufOutput中
1
2
3
4
5
|
public final void writeTo(Output output, T message) throws IOException
{ for (Field<T> f : getFields())
f.writeTo(output, message);
} |
第一步中将业务对象的字段信息都封装到了Field中了,可以看一下Field类提供的几个方法:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
/** * Writes the value of a field to the {@code output}.
*/
protected abstract void writeTo(Output output, T message)
throws IOException;
/** * Reads the field value into the {@code message}.
*/
protected abstract void mergeFrom(Input input, T message)
throws IOException;
/** * Transfer the input field to the output field.
*/
protected abstract void transfer(Pipe pipe, Input input, Output output,
boolean repeated) throws IOException;
|
提供了三个抽象方法,分别是写数据,读数据和转移数据
下面已int类型为实例,看看实现:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
|
public static final RuntimeFieldFactory<Integer> INT32 = new RuntimeFieldFactory<Integer>(
ID_INT32)
{
@Override
public <T> Field<T> create( int number, java.lang.String name,
final java.lang.reflect.Field f, IdStrategy strategy)
{
final boolean primitive = f.getType().isPrimitive();
final long offset = us.objectFieldOffset(f);
return new Field<T>(FieldType.INT32, number, name,
f.getAnnotation(Tag. class ))
{
@Override
public void mergeFrom(Input input, T message)
throws IOException
{
if (primitive)
us.putInt(message, offset, input.readInt32());
else
us.putObject(message, offset,
Integer.valueOf(input.readInt32()));
}
@Override
public void writeTo(Output output, T message)
throws IOException
{
if (primitive)
output.writeInt32(number, us.getInt(message, offset),
false );
else
{
Integer value = (Integer) us.getObject(message, offset);
if (value != null )
output.writeInt32(number, value.intValue(), false );
}
}
...
};
}
|
上面这段代码可以在RuntimeUnsafeFieldFactory中找到,基本的数据类型都在此类中能找到,collection和map分别在RuntimeRepeatedFieldFactory和RuntimeMapFieldFactory中,writeTo方法调用了ProtobufOutput中的writeInt32方法:
1
2
3
4
5
6
7
8
9
10
|
public void writeInt32( int fieldNumber, int value, boolean repeated) throws IOException
{
...
tail = writeTagAndRawVarInt32(
makeTag(fieldNumber, WIRETYPE_VARINT),
value,
this ,
tail);
...
}
|
写入field的Tag已经Value,Protobuf也是这种形式存放的,如下图所示:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
|
public static LinkedBuffer writeTagAndRawVarInt32( int tag, int value,
final WriteSession session, LinkedBuffer lb)
{
final int tagSize = computeRawVarint32Size(tag);
final int size = computeRawVarint32Size(value);
final int totalSize = tagSize + size;
if (lb.offset + totalSize > lb.buffer.length)
lb = new LinkedBuffer(session.nextBufferSize, lb);
final byte [] buffer = lb.buffer;
int offset = lb.offset;
lb.offset += totalSize;
session.size += totalSize;
if (tagSize == 1 )
buffer[offset++] = ( byte ) tag;
else
{
for ( int i = 0 , last = tagSize - 1 ; i < last; i++, tag >>>= 7 )
buffer[offset++] = ( byte ) ((tag & 0x7F ) | 0x80 );
buffer[offset++] = ( byte ) tag;
}
if (size == 1 )
buffer[offset] = ( byte ) value;
else
{
for ( int i = 0 , last = size - 1 ; i < last; i++, value >>>= 7 )
buffer[offset++] = ( byte ) ((value & 0x7F ) | 0x80 );
buffer[offset] = ( byte ) value;
}
return lb;
}
|
tag是通过makeTag方法创建的:
1
2
3
4
|
public static int makeTag( final int fieldNumber, final int wireType)
{ return (fieldNumber << TAG_TYPE_BITS) | wireType;
} |
fieldNumber每个字段的标号,wire_type是该字段的数据类型,所有如果我们改变了业务对象类中字段的顺序,或者改变了字段的类型,都会出现反序列化失败;
前面提到的数据压缩在方法computeRawVarint32Size中体现出来了:
1
2
3
4
5
6
7
8
9
10
11
12
|
public static int computeRawVarint32Size( final int value)
{ if ((value & ( 0xffffffff << 7 )) == 0 )
return 1 ;
if ((value & ( 0xffffffff << 14 )) == 0 )
return 2 ;
if ((value & ( 0xffffffff << 21 )) == 0 )
return 3 ;
if ((value & ( 0xffffffff << 28 )) == 0 )
return 4 ;
return 5 ;
} |
根据value值的范围,返回不同的字节数;接下来的代码也可以看到检查LinkedBuffer的空间是否足够,不够进行扩充;接下来的代码就是用压缩的方式将tag和Value存入缓存中。
总结
大致了解了Protostuff对业务对象序列化的过程,不管是简单的测试还是通过查看源码,都可以发现Protostuff的序列化方式是完全借鉴Protobuf来实现的。