困难是最好的教练
阿里巴巴从2008年开始建设自有的大数据体系,致力于构建好数据服务多样的业务。一路上,经历了各种各样的困难。
技术陷在临时取数不可自拔
阿里巴巴曾今通过建设专门的“临时取数需求管理系统”,给每个业务线分配临时取数的时间额度,每次还没到月底额度已经为零。业务同学求着数据技术同学加班取数的情况时有发生。为了改变这一局面,专门建立了“业务人员SQL技能培训”,希望用这样的方式让业务人员自己掌握临时取数技能,美其名曰“赋能”。而这背后的本质是:资源。
数据口径定义有差别
曾经就因为数据口径差异,差点造成商家损失。商家在后台看到的数据预测,显示可以达到活动报名要求,于是提前备货,准备大干一场。但是最终报名却没有通过,原因是小二侧的数据口径与商家侧的数据口径不一致,小二系统评估商家的数据未达标,导致不通过。虽然最终通过协调解决了问题。但这背后的本质是:标准。
加班做报表,汇报还被骂
加班取数是常态,通常取数花费2-3小时,而之后的核对差异则要花费巨大精力,动辄1-2天;最后的汇报环节,也会因为一些口径差异及数据质量问题造成尴尬,甚至会出现错误数据导致决策失误的情况。这背后的本质是:质量。
除了上述这几个典型的场景,阿里巴巴也曾因业务增长而出现数据量爆发增长,对数据不治理不管理,意味着数据的存储和计算成本不断攀升。成本,也是大数据领域面临的困难之一。
探索中前行,实战中沉淀
带着克服困难的决心,阿里巴巴开始了B2B业务数据建设、电商业务数据建设、阿里系业务数据建设。过程中,边探索、边沉淀、边前行,通过更体系化的数据建设提升数据质量,降低数据重构的风险,提升数据服务的效率。
经历近十年的打磨,基于实战,阿里巴巴沉淀了一套大数据建设的方法论:OneData(OneModel+OneID+OneService)。其中:OneModel通过对数据体系化架构、数据元素规范定义、数据指标结构化拆解,对数据进行统一的构建及管理;OneID通过建立实体对象、对象相关的行为数据及标签构建方法,对企业的核心商业要素进行资产化;对数据资产进行统一的主题式数据单元构建,配置构建数据API并提供API服务,以提升数据资产消费的便捷性,提升数据资产价值。
克服痛点 创造领先的大数据能力
随着全球数字化进程的加速,企业面临着更加严峻的市场竞争,而数智化转型所遇到的困境也曾是阿里巴巴最初之痛。于是,阿里云数据中台应运而生,与各行各业的企业在数据领域开展了合作,解决企业凸显的数据问题:
- 数据标准问题:烟囱式开发及局部业务服务支撑,导致指标同名不同口径问题频发;历史上不同业务系统逐步迭代上线,相同对象属性编码不一致等问题突出;
- 数据质量问题:重复建设导致任务链冗长、任务繁多,计算资源紧张,数据时效性不好;口径梳理定义的文档沉淀到开发代码实现之间存在脱节,数据准确性保障风险高;
- 需求响应问题:烟囱式开发周期长、效率低,面向应用的服务化不足,导致业务响应速度慢,业务不满意的同时技术又觉得没有沉淀与成长;既懂业务又懂数据的人才不足,需求理解到开发实现涉及大量沟通,服务效率较差;
- 成本资源问题:烟囱式开发的重复建设浪费技术资源;上线难下线更难,源系统或业务变更不能及时反映到数据上,加之数据不标准,研发维护难上加难的同时,大量无用计算和存储造成资源浪费。
阿里巴巴提出的OneData方法论帮助企业捋清了数据全生命周期的管理思路,更将其植入到产品Dataphin(智能数据构建与管理)中,通过阿里云为企业提供服务。Dataphin除了大数据处理全链路涉及到的数据集成、开发、发布、调度、运维能力,同时提供了数据规范定义、逻辑模型定义、代码自动化生成、数据主题式服务能力,高效地完成好数据的构建。
Dataphin产品核心模块
Dataphin自2018年问世以来,已发展出了丰满的大图,到目前为止经历了多轮大版本升级,产品核心的能力模块清晰显现。
1、环境适配
最底层为Dataphin的环境适配能力。Dataphin支持不同的云环境,为不同规模以及不同部署要求的客户提供不同的选择,包括公共云多租户、公共云VPC、专有云企业版及敏捷版,以及本地IDC部署。
2、引擎支持
在云环境之上,根据不同的云环境可以支持不同的计算引擎。离线的计算引擎包括阿里云MaxCompute,Hadoop生态引擎包括阿里云E-MapReduce、CDH5、CDH6、以及即将支持的FusionInsight、CDP等。实时计算引擎支持阿里云Blink和Flinkvvp。开源版本的Flink也即将支持。
3、数据构建
基于不同的云环境和计算引擎,Dataphin提供了大数据处理全链路涉及的数据集成、开发、发布、调度、运维能力,提供了数据规范定义、逻辑模型定义、代码自动化生成、主题是查询的数据构建能力。
4、资产
Dataphin提供了配套的资产地图、资产血缘、资产质量管理和监控、资源成本管理和提效的资产管理能力,并提供了配置化的资产服务研发和管理能力,可将数据资产快速服务业务、反哺业务。