flink 启动job命令

0. 启动flink-session ./bin/yarn-session.sh -n 4 -s 3 -jm 2048 -tm 6144 高版本 bin/yarn-session.sh -d -s 3 -jm 2048 -tm 6144 -qu root.sparkstreaming -nm hm2-helper-workflow   参数解读   flink 启动job命令   1. checkpoint # 开启checkpoint,默认为最近20个 flink 启动job命令 # 从指定的checkpoint处启动,最近的一个/flink/checkpoints/workFlowCheckpoint/339439e2a3d89ead4d71ae3816615281/chk-1740584启动,通常需要先停掉当前运行的flink-session,然后通过命令启动 #!/bin/bash ../bin/flink run -p 10 -s /flink/checkpoints/workFlowCheckpoint/339439e2a3d89ead4d71ae3816615281/chk-1740584/_metadata -c com.code2144.helper_wink-1.0-SNAPSHOT.jar   flink 启动job命令 启动后是CREATED状态 flink 启动job命令 过一会恢复为RUNNING状态 flink 启动job命令   2. savepoint # 手动savepoint /app/local/flink-1.6.2/bin/flink savepoint 0409251eaff826ef2dd775b6a2d5e219 [hdfs://bigdata/path] flink 启动job命令   # 手动取消任务 /app/local/flink-1.6.2/bin/flink cancel 0409251eaff826ef2dd775b6a2d5e219   # 从指定savepoint启动job bin/flink run -p 8 -s hdfs:///flink/savepoints/savepoint-567452-9e3587e55980 -c com.code2144.helper_workflow.HelperWorkFlowStreaming jars/BSS-ONSS-Flink-1.0-SNAPSHOT.jar
上一篇:编译原理--01 复习大纲(清华大学出版社第3版)


下一篇:flink(十三):flink-CheckPoint和SavePoint作用和区别