Tarjan算法之边双联通分量

定义

若一个无向连通图不存在割边,则称它为“边双连通图”。无向连通图的极大边双连通子图被称为“边双连通分量”,简记为“e-DCC”

定理

一个图为边双连通图,当且仅当任意一条边都至少包含在一个简单环中。

求法

把图中所有桥删除,剩下的都是e-DCC。
具体方法:一般用Tarjan标记所有桥边,再用dfs求出各连通块个数(遍历时不走桥)。
常和缩点搭配:把e-DCC的编号当做节点,桥当做节点间的连边,则会形成一棵树或一座森林。

例题冗余路径

经典应用-构造边双连通分量:树的每一条边都是桥,但是给任意不同且不直接相连的两点加上一边后两点与其lca构成一个环,环上所有点为边强连通。由于题目要求连边最少,那么就使每次加的边让更多点边强连通。由上分析环的构造可知lca离两点越远对图上点贡献越多。那么每次将lca离两点最远的叶节点相连。本题不要求输出方案,所以因为每次都会
消掉两叶节点那么答案直接为(叶节点数 + 1)/2。(奇数剩余的一个点随便向其他点连边)。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<queue>
#include<cstring>
#include<algorithm>
#define lson x<<1
#define rson x<<1|1
#define ll long long
#define rint register int
#define mid ((st[x].l + st[x].r) >> 1)
using namespace std;
template <typename xxx> inline void read(xxx &x) {
    char c = getchar(),f = 1;x = 0;
    for(;c ^ '-' && !isdigit(c);c = getchar());
    if(c == '-') c = getchar(),f = -1;
    for(;isdigit(c);c = getchar()) x = (x<<1) + (x<<3) + (c ^ '0');
    x *= f;
}
template<typename xxx> inline void print(xxx x)
{
    if(x<0){putchar('-');x=-x;}
    if(x>9) print(x/10);
    putchar(x%10+'0');
}
const int maxn = 200010;
const int inf = 0x7fffffff;
const int mod = 1e9 + 7;
struct edge{
    int to,last,fg,from;    
}e[maxn];
int head[maxn],tot;
inline void add(int from,int to) {
    ++tot;
    e[tot].to = to;
    e[tot].from = from;
    e[tot].last = head[from];
    head[from] = tot;
}
int n,m;
int dfn[maxn],low[maxn],cnt;
inline void tarjan(int x,int in_edge) {
    dfn[x] = low[x] = ++cnt;
    for(rint i = head[x];i; i = e[i].last) {
        if(!dfn[e[i].to]) {
            tarjan(e[i].to,i);
            if(low[e[i].to] < low[x]) low[x] = low[e[i].to];
            if(low[e[i].to] > dfn[x]) {
                e[i].fg = e[i^1].fg = 1;
            }
        }
        else if(i ^ (in_edge ^ 1) && dfn[e[i].to] < low[x]) low[x] = dfn[e[i].to];
    }
}
int col[maxn],num,in[maxn];
inline void ddfs(int x) {
    col[x] = num;
    for(rint i = head[x];i;i = e[i].last) {
        if(col[e[i].to] || e[i].fg) continue;
        ddfs(e[i].to);
    }
}
int main()
{
    read(n);read(m);tot = 1;
    for(rint i = 1;i <= m; ++i) {
        int x,y;
        read(x);read(y);
        add(x,y);add(y,x);
    }   
    for(rint i = 1;i <= n; ++i) {
        if(!dfn[i]) {
            tarjan(i,0);
        }
    }
    for(rint i = 1;i <= n; ++i) {
        if(!col[i]) {
            ++num;
            ddfs(i);
        }
    }
    for(rint i = 2;i <= tot; ++i) {
        if(col[e[i].from] == col[e[i].to]) continue;
        ++in[col[e[i].from]];
        ++in[col[e[i].to]];
    }
    int ans = 0;
    for(rint i = 1;i <= num; ++i) 
        if(in[i] == 2) ++ans;
    print((ans + 1) / 2);
    return 0;
}
/*

*/
上一篇:POJ2533&&SP1799 The Bottom of a Graph(tarjan+缩点)


下一篇:Luogu P3388 【模板】割点(割顶)