2014-12-19 Created By BaoXinjian
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABQAAAATCAIAAAAf7rriAAABHklEQVQ4jc3Tv0sCcRjH8Wc4/wL9H4T0P3CpXYQcHQpuFIQayjvXQrnulhosHDpQsBZB8Q9wuWu1QVBcbMtNyaAm3y0e/fC4Lmvo4bO++D6fB74CLJdPm0X+MRaRn2HuowziDFNMVBFhajDvsHB4GYXBMQZxRikeVBHh0WDeDo+jKzz5gJ8dXjfAU4NZm4UbEse+4uC1qVYplSgU2Ntf4aHXeXrGLBjX65TLaEXyeTIZdrYjCskEIpLdRdMwTWybOxc/3GpxfsHpCUfH5HKk0xGF5JaHi1gm9jWuP3Ycbm+o1bAsDg9Q1U9YC8b9Pt0uzSZXl/LdrOHxmF6PTodGg0oFXY8oJLzOuveyf+f1vB8si17EDFj7zz5GyPwKvwECQrZ4yvBSdAAAAABJRU5ErkJggg==" alt="" />一、摘要
在SQL语句的执行计划中,包含很多字段项和很多模块,其不同字段代表了不同的含义且在不同的情形下某些字段、模块显示或不显示,下
面的描述给出了执行计划中各字段的含义以及各模块的描述。
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABQAAAATCAIAAAAf7rriAAABHklEQVQ4jc3Tv0sCcRjH8Wc4/wL9H4T0P3CpXYQcHQpuFIQayjvXQrnulhosHDpQsBZB8Q9wuWu1QVBcbMtNyaAm3y0e/fC4Lmvo4bO++D6fB74CLJdPm0X+MRaRn2HuowziDFNMVBFhajDvsHB4GYXBMQZxRikeVBHh0WDeDo+jKzz5gJ8dXjfAU4NZm4UbEse+4uC1qVYplSgU2Ntf4aHXeXrGLBjX65TLaEXyeTIZdrYjCskEIpLdRdMwTWybOxc/3GpxfsHpCUfH5HKk0xGF5JaHi1gm9jWuP3Ycbm+o1bAsDg9Q1U9YC8b9Pt0uzSZXl/LdrOHxmF6PTodGg0oFXY8oJLzOuveyf+f1vB8si17EDFj7zz5GyPwKvwECQrZ4yvBSdAAAAABJRU5ErkJggg==" alt="" />二、执行计划分析过程
1. 分析解析计划
Step1. 打开熟悉的查看工具:PL/SQL Developer - Toad。
在PL/SQL Developer中写好一段SQL代码后,按F5,PL/SQL Developer会自动打开执行计划窗口,显示该SQL的执行计划。
Step2. 查看总COST,获得资源耗费的总体印象
一般而言,执行计划第一行所对应的COST(即成本耗费)值,反应了运行这段SQL的总体估计成本,单看这个总成本没有实际意义,
但可以拿它与相同逻辑不 同执行计划的SQL的总体COST进行比较,通常COST低的执行计划要好一些。
Step3. 按照从左至右,从上至下的方法,了解执行计划的执行步骤
执行计划按照层次逐步缩进,从左至右看,缩进最多的那一步,最先执行,如果缩进量相同,则按照从上而下的方法判断执行顺序,可粗略认为上面的步骤优先执行。
每一个执行步骤都有对应的COST,可从单步COST的高低,以及单步的估计结果集(对应ROWS/基数),来分析表的访问方式,连接顺序以及连接方式是 否合理。
Step4. 分析表的访问方式
表的访问方式主要是两种:
全表扫描(TABLE ACCESS FULL)和索引扫描(INDEX SCAN),如果表上存在选择性很好的索引,却走了全表扫描,而且是大表的全表扫描,就说明表的访问方式可能存在问题;
若大表上没有合适的索引而走了全表 扫描,就需要分析能否建立索引,或者是否能选择更合适的表连接方式和连接顺序以提高效率。
Step5. 分析表的连接方式和连接顺序
表的连接顺序:就是以哪张表作为驱动表来连接其他表的先后访问顺序。
表的连接方式:简单来讲,就是两个表获得满足条件的数据时的连接过程。
主要有三种表连接方式,嵌套循环(NESTED LOOPS)、哈希连接(HASH JOIN)和排序-合并连接(SORT MERGE JOIN)。我们常见得是嵌套循环和哈希连接。
嵌套循环:
最适用也是最简单的连接方式。类似于用两层循环处理两个游标,外层游标称作驱动表,Oracle检索驱动表的数据,一条一条的代入内层游标,查找满足WHERE条件的所有数据,因此内层游标表中可用索引的选择性越好,嵌套循环连接的性能就越高。
哈希连接:
先将驱动表的数据按照条件字段以散列的方式放入内存,然后在内存中匹配满足条件的行。
哈希连接需要有合适的内存,而且必须在CBO优化模式下,连接两表的WHERE条件有等号的情况下才可以使用。哈希连接在表的数据量较大,表中没有合适的索引可用时比嵌套循环的效率要高。
2. 总结两点:
2.1 这里看到的执行计划,只是SQL运行前可能的执行方式,实际运行时可能因为软硬件环境的不同,而有所改变,而且cost高的执行计划,不一定在实际运行起来,速度就一定差,我们平时需要结合执行计划,和实际测试的运行时间,来确定一个执行计划的好坏。
2.2 对于表的连接顺序,多数情况下使用的是嵌套循环,尤其是在索引可用性好的情况下,使用嵌套循环式最好的,但当ORACLE发现需要访问的数据表较大,索引 的成本较高或者没有合适的索引可用时,会考虑使用哈希连接,以提高效率。排序合并连接的性能最差,但在存在排序需求,或者存在非等值连接无法使用哈希连接 的情况下,排序合并的效率,也可能比哈希连接或嵌套循环要好。
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABQAAAATCAIAAAAf7rriAAABHklEQVQ4jc3Tv0sCcRjH8Wc4/wL9H4T0P3CpXYQcHQpuFIQayjvXQrnulhosHDpQsBZB8Q9wuWu1QVBcbMtNyaAm3y0e/fC4Lmvo4bO++D6fB74CLJdPm0X+MRaRn2HuowziDFNMVBFhajDvsHB4GYXBMQZxRikeVBHh0WDeDo+jKzz5gJ8dXjfAU4NZm4UbEse+4uC1qVYplSgU2Ntf4aHXeXrGLBjX65TLaEXyeTIZdrYjCskEIpLdRdMwTWybOxc/3GpxfsHpCUfH5HKk0xGF5JaHi1gm9jWuP3Ycbm+o1bAsDg9Q1U9YC8b9Pt0uzSZXl/LdrOHxmF6PTodGg0oFXY8oJLzOuveyf+f1vB8si17EDFj7zz5GyPwKvwECQrZ4yvBSdAAAAABJRU5ErkJggg==" alt="" />三、执行计划中各字段的描述
1. 基本字段(总是可用的)
- Id 执行计划中每一个操作(行)的标识符。如果数字前面带有星号,意味着将在随后提供这行包含的谓词信息
- Operation 对应执行的操作。也叫行源操作
- Name 操作的对象名称
2. 查询优化器评估信息
- Rows(E-Rows) 预估操作返回的记录条数
- Bytes(E-Bytes) 预估操作返回的记录字节数
- TempSpc 预估操作使用临时表空间的大小
- Cost(%CPU) 预估操作所需的开销。在括号中列出了CPU开销的百分比。注意这些值是通过执行计划计算出来的。换句话说,父操作的开销包含子操作的开销
- Time 预估执行操作所需要的时间(HH:MM:SS)
3. 分区(仅当访问分区表时下列字段可见)
- Pstart 访问的第一个分区。如果解析时不知道是哪个分区就设为KEY,KEY(I),KEY(MC),KEY(OR),KEY(SQ)
- Pstop 访问的最后一个分区。如果解析时不知道是哪个分区就设为KEY,KEY(I),KEY(MC),KEY(OR),KEY(SQ)
4. 并行和分布式处理(仅当使用并行或分布式操作时下列字段可见)
- Inst 在分布式操作中,指操作使用的数据库链接的名字
- TQ 在并行操作中,用于从属线程间通信的表队列
- IN-OUT 并行或分布式操作间的关系
- PQ Distrib 在并行操作中,生产者为发送数据给消费者进行的分配
5. 运行时统计(当设定参数statistics_level为all或使用gather_plan_statistics提示时,下列字段可见)
- Starts 指定操作执行的次数
- A-Rows 操作返回的真实记录数
- A-Time 操作执行的真实时间(HH:MM:SS.FF)
6. I/O 统计(当设定参数statistics_level为all或使用gather_plan_statistics提示时,下列字段可见)
- Buffers 执行期间进行的逻辑读操作数量
- Reads 执行期间进行的物理读操作数量
- Writes 执行期间进行的物理写操作数量
7. 内存使用统计
- OMem 最优执行所需内存的预估值
- 1Mem 一次通过(one-pass)执行所需内存的预估值
- 0/1/M 最优/一次通过/多次通过(multipass)模式操作执行的次数
- Used-Mem 最后一次执行时操作使用的内存量
- Used-Tmp 最后一次执行时操作使用的临时空间大小。这个字段必须扩大1024倍才能和其他衡量内存的字段一致(比如,32k意味着32MB)
- Max-Tmp 操作使用的最大临时空间大小。这个字段必须扩大1024倍才能和其他衡量内存的字段一致(比如,32k意味着32MB)
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABQAAAATCAIAAAAf7rriAAABHklEQVQ4jc3Tv0sCcRjH8Wc4/wL9H4T0P3CpXYQcHQpuFIQayjvXQrnulhosHDpQsBZB8Q9wuWu1QVBcbMtNyaAm3y0e/fC4Lmvo4bO++D6fB74CLJdPm0X+MRaRn2HuowziDFNMVBFhajDvsHB4GYXBMQZxRikeVBHh0WDeDo+jKzz5gJ8dXjfAU4NZm4UbEse+4uC1qVYplSgU2Ntf4aHXeXrGLBjX65TLaEXyeTIZdrYjCskEIpLdRdMwTWybOxc/3GpxfsHpCUfH5HKk0xGF5JaHi1gm9jWuP3Ycbm+o1bAsDg9Q1U9YC8b9Pt0uzSZXl/LdrOHxmF6PTodGg0oFXY8oJLzOuveyf+f1vB8si17EDFj7zz5GyPwKvwECQrZ4yvBSdAAAAABJRU5ErkJggg==" alt="" />四、执行计划中各模块的描述与举例
1. 执行前,系统预估解析计划,Explain Plan
SQL> explain plan for
02. 2 select * from emp e,dept d
03. 3 where e.deptno=d.deptno
04. 4 and e.ename='SMITH';
05.
06.Explained.
15.
16.SQL> set linesize 180
17.SQL> set pagesize 0
18.SQL> select * from table(dbms_xplan.display(null,null,'advanced')); --使用dbms_xplan.display函数获得语句的执行计划
19.Plan hash value: 351108634 --SQL语句的哈希植
20.
21.---------------------------------------------------------------------------------------- /*执行计划部分*/
22.| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
23.----------------------------------------------------------------------------------------
24.| 0 | SELECT STATEMENT | | 1 | 117 | 4 (0)| 00:00:01 |
25.| 1 | NESTED LOOPS | | 1 | 117 | 4 (0)| 00:00:01 |
26.|* 2 | TABLE ACCESS FULL | EMP | 1 | 87 | 3 (0)| 00:00:01 |
27.| 3 | TABLE ACCESS BY INDEX ROWID| DEPT | 1 | 30 | 1 (0)| 00:00:01 |
28.|* 4 | INDEX UNIQUE SCAN | PK_DEPT | 1 | | 0 (0)| 00:00:01 |
29.----------------------------------------------------------------------------------------
30.
31.Query Block Name / Object Alias (identified by operation id): --这部分显示的为查询块名和对象别名
32.-------------------------------------------------------------
33.
34. 1 - SEL$1 --SEL$为select 的缩写,位于块1,相应的还有DEL$,INS$,UPD$等
35. 2 - SEL$1 / E@SEL$1 --E@SEL$1,对应到执行计划中的操作ID为2上,即在表E上的查询,E为别名,下面类同
36. 3 - SEL$1 / D@SEL$1
37. 4 - SEL$1 / D@SEL$1
38.
39.Outline Data --提纲部分,这部分将执行计划中的图形化方式以文本形式来呈现,即转换为提示符方式
40.-------------
41.
42. /*+
43. BEGIN_OUTLINE_DATA
44. USE_NL(@"SEL$1" "D"@"SEL$1") --使用USE_NL提示,即嵌套循环
45. LEADING(@"SEL$1" "E"@"SEL$1" "D"@"SEL$1") --指明前导表
46. INDEX_RS_ASC(@"SEL$1" "D"@"SEL$1" ("DEPT"."DEPTNO")) --指明对于D上的访问方式为使用索引
47. FULL(@"SEL$1" "E"@"SEL$1") --指明对于E上的访问方式为全表扫描
48. OUTLINE_LEAF(@"SEL$1")
49. ALL_ROWS
50. OPTIMIZER_FEATURES_ENABLE('10.2.0.3')
51. IGNORE_OPTIM_EMBEDDED_HINTS
52. END_OUTLINE_DATA
53. */
54.
55.Predicate Information (identified by operation id): --谓词信息部分,在执行计划中ID带有星号的每一行均对应到下面中的一行
56.---------------------------------------------------
57.
58. 2 - filter("E"."ENAME"='SMITH')
59. 4 - access("E"."DEPTNO"="D"."DEPTNO")
60.
61.Column Projection Information (identified by operation id): --执行时每一步骤所返回的列,下面的不同步骤返回了不同的列
62.-----------------------------------------------------------
63.
64. 1 - (#keys=0) "E"."EMPNO"[NUMBER,22], "E"."ENAME"[VARCHAR2,10],
65. "E"."JOB"[VARCHAR2,9], "E"."MGR"[NUMBER,22], "E"."HIREDATE"[DATE,7],
66. "E"."SAL"[NUMBER,22], "E"."COMM"[NUMBER,22], "E"."DEPTNO"[NUMBER,22],
67. "D"."DEPTNO"[NUMBER,22], "D"."DNAME"[VARCHAR2,14], "D"."LOC"[VARCHAR2,13]
68. 2 - "E"."EMPNO"[NUMBER,22], "E"."ENAME"[VARCHAR2,10], "E"."JOB"[VARCHAR2,9],
69. "E"."MGR"[NUMBER,22], "E"."HIREDATE"[DATE,7], "E"."SAL"[NUMBER,22],
70. "E"."COMM"[NUMBER,22], "E"."DEPTNO"[NUMBER,22]
71. 3 - "D"."DEPTNO"[NUMBER,22], "D"."DNAME"[VARCHAR2,14], "D"."LOC"[VARCHAR2,13]
72. 4 - "D".ROWID[ROWID,10], "D"."DEPTNO"[NUMBER,22]
73.
74.Note --注释与描述部分,下面的描述中给出了本次SQL语句使用了动态采样功能
75.-----
76. - dynamic sampling used for this statement
77.
78.58 rows selected.
2. 执行后,系统实际解析计划,Explain Plan
SQL> select /*+ gather_plan_statistics */ * --注意此处增加了提示gather_plan_statistics并且该语句被执行
02. 2 from emp e,dept d
03. 3 where e.deptno=d.deptno
04. 4 and e.ename='SMITH';
05.
06. 7369 SMITH CLERK 7902 17-DEC-80 800 20 20 RESEARCH DALLAS
07.
08.SQL> select * from table(dbms_xplan.display_cursor(null,null,'iostats last')); --使用display_cursor获取实际的执行计划
09.
10.SQL_ID fpx7zw59f405d, child number 0 --这部分给出了SQL语句的SQL_ID,子游标号以及原始的SQL语句
11.-------------------------------------
12.select /*+ gather_plan_statistics */ * from emp e,dept d where e.deptno=d.deptno and
13.e.ename='SMITH'
14.
15.Plan hash value: 351108634 --SQL 语句的哈希值
16. --SQL语句的执行计划,可以看到下面显示的字段一部分不同于预估执行计划中的字段
17.-----------------------------------------------------------------------------------------------------------
18.| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | Reads |
19.-----------------------------------------------------------------------------------------------------------
20.| 1 | NESTED LOOPS | | 1 | 1 | 1 |00:00:00.01 | 10 | 1 |
21.|* 2 | TABLE ACCESS FULL | EMP | 1 | 1 | 1 |00:00:00.01 | 8 | 0 |
22.| 3 | TABLE ACCESS BY INDEX ROWID| DEPT | 1 | 1 | 1 |00:00:00.01 | 2 | 1 |
23.|* 4 | INDEX UNIQUE SCAN | PK_DEPT | 1 | 1 | 1 |00:00:00.01 | 1 | 1 |
24.-----------------------------------------------------------------------------------------------------------
25.
26.Predicate Information (identified by operation id):
27.---------------------------------------------------
28.
29. 2 - filter("E"."ENAME"='SMITH')
30. 4 - access("E"."DEPTNO"="D"."DEPTNO")
31.
32.Note
33.-----
34. - dynamic sampling used for this statement
35.
36.
37.26 rows selected.
Thank and Regards
转载:乐沙弥 - http://blog.csdn.net/leshami/article/details/6860007
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAfgAAACWCAIAAAC9ww22AAAgAElEQVR4nO2d91cbWdrn+Rv2nN0ft8/Z0/ue3X33nHfffXfOzPDOO++Enp7x654ed3B3T0dHHLAxOQgQOYgoEEkSEso5AMZyABmDiSYHEUwOitjgdsAman9QqipVKYAckJ/PuT9AhVu3rm5971PPfe6tkMaFVUiQIEGCFMQp5K2XABIkSJAgvdYEQg8JEiRIQZ5cQm8FAAAAgggQegAAgCAHhB4AACDIAaEHAAAIckDoAQAAghwQegAAgCAHhB4AACDIAaEHAAAIckDoAQAAghwQegAAgCAHhB4AACDIAaEHAAAIckDoAQAAghwQegAAgCAHhB4AACDIAaEHAAAIckDoAQAAghwQegAAgCAHhB4AACDICZjQm3fl5l25cU9u3JMbd5XGXaVxV23cVRv2bElp2FPq9+WutC037MqMe3LTvty0LzfuyQ3bjYbtG8YtrXGr1bilNe00m3abTPsK477AuM/XbwkMW2LTrtiyL12zypzJvCex7EvX9pVr+0rLnsq8qzRtq0zbKvOO2ryjDmxlAQAAHEXejNArDXtKw55L5Q22Y/bkxj2ZcU9i3JMY92TGXbVxp8m002zcaja8uqN/pdFvq/U7Uv0uT7/LNe2KTTtS047UuC0xbkuMOyLDltiwLbTsydf2FTahX9tXr+2rLbv1NpUHoQcAALAGUOjREu9KDpVXGvbkhj25YV9mS2arcm1fYdmXmvcEtmTZk6/tqx/tadZ2b5m3Naat68YtpXFbYtzhmXb5NjW37CnMu3LTjsy8KzPvyi17ctOOzLQjs3UzjqR0psBWFgAAwFHkzQi9HKPyxj3ZY6v6kVVl2Reb9/nmfa55n2vZF65ZZYYtmXFLbdpqNG3Xm7ZVxm2JYZur3+IZt6XGLaXhlcLwSmHclpt2FJY91dq+evWlZPWlyJb0r8SGLYlxW2rakZl3leZdeWArCwAA4CgSOKFH6vueHJ1kbkn+yFr/eL/+0b5sbV9g2a+z7LMse1zLnmDlBV+/KTG9Ulu2GyzbavO2zPBKsLopWH4qXn4qX/pZZkvLT+XLT6Urz2Srz6WrL8Qrz0WrL4T6TZFxS2zekVp2bTa+LLCVBQAAcBR5A0Lv0nfzrsy4Z/eurO00re00ru0q1vbElj2ueY9t3GYbtjiWXZllW23Zvm5+dd30qsH4UmXYlOtfyJaeyJd/VtnS0hPl4oZi/rFk7rFo9bly5Zls5Zlk5blIvykybUvW9uSPrUrzriwwQt8t++CYrCUAGQWGeWkFfnm6ZR8cq6Cv+JufhR6eGtMdiJIBAPCuEkChVxt31Uiht0mtI8nNu3LLjty8q7TsKC3bDcbNG2svbz7eblrfVT7eFVu2eYZN9uozjvGFbGldOq0Xj85xhx6yh2ZYo/Ns3RJ3fFkwqRfPmOXzj1SL6/ULj9Vzj+Sza5KFdfnChmR+XTi/zl/8mbu6KTBtSyy7EvOexLwnOXwFtRSmfnAs9YNjqcellsPlpIs5lvrBsdQPwtvmD5NNtwy3PPPSCtt2QtVeaTuOcxeOUh2kkwAA4GjwZoRebtmx6bvast3waOv6o1ca49M75md31181b+ze3NhpsLyS638WL61Lxufresdrm+9TlZo8aUO6rCmz4U6Opo2i7SlpG6ronawdWRBM6mXTRsW0UTZlkE4bpVNGwaSBO2Wqe7jGmt+oW37O07/kB0joHTpYqDt0Vlab+fzBsVSfXxHsx6PU2Sb02N7CmbMnvXZ0Boir27sNUHkACGYCJvT6XZUtktK4rzLtK8xWxdq+4pFVufyMv25t2LK2mDfrlzdke9buR5s3Rer4itqrI1OKp696Hm+2Pnp+e2pZeOtejrQxVdNCVTQWiWQUviSfI8iqZiVV18YyuHGypjTV7Yw7ncUPdKzhh8KhacHYnGTGoHqol4/M1Y3O186a+XNrnInV6ilD9fJz3uIz7vIL/iFrB0cZEdiMff8sfYc97rO3xN7TuK7iEPoWaYVLoO0bZTHhnt8YHP2Bo9+yv68QdGOOt5l3yHMFAMABCKzQKw17SuO+wrQvtwn92r5y03p7YUOwvCFde3lDv9G48uj6wxVVWzedRP57Sfm1B0PisWklkxtTXnNZqsph1qXUNzKk8ioen8YXVMgU1ar6GpG0iFlHEqmSxY0k9e3s5k5qW191x2Dt0LR41tCoW5ANTtcNz7JnjMJZM39Sz3hoYuqfCVaeC1ZfCn0vv9NFc4Dkj9Zb6OH4wmrvVNx22beHVxzHv7qsxVH4mG6H4hO/f9hycxTY6bchTDHdupiAvdAAAPB2CKDQK5zx8rbJrpY9xdquamOv0bxZv/ZC8+hFy/qLthc7A8vGu3daqisq49IzznC4GXea6SJxnlJV2nxHyGGXMqrLa2uqmdVVtTWVAm6NSsFSq+hieX5TS+H1lpwmbX5TC6Xhdn7jnUJtZ1XvCG9wQvhgtG5wkjO5JJxe5ekWmdN61vIT4dJTwcqmH0KPg29ujXlpBUIHnS6UQySsqupikGVwd92stB332Uh3ZVKos4k+jMQCQNATMKFHxsvbYmwsO3LLjnLliWx9+9amtevZdveTF/3mta67rZx8ymWROJ/Hz6aWRbNYGX1910eG7yqkHFoplZyYSU7MzUzJz83Iz8tKLy5M4/OKW7TMtp7Ktgdl93rLm+9TG+9Q5I25yqb863eoPUP87iFO/zh3dEYwOls3OF09MlszbWDPPebNPxEcombcfCaHxbcMu2W4vhdXd4IVelvXgvSuOO1050bsMS2FDlOdsEuwnQK+ewAIBgJn0TvWNjDsywy7UsOu1LwtM2+p1l5dNz/TPH5+7/HT3sEhdSWNFBv1Y1LCGZm0oKuLp21hSSVFN5u42tsqXi27OKc87krGTycjvj1xMfxsdNy1KFJ8OKMmo72jrrm9pK2vtHuY3jXEaO2u0WjLlE2FYlVOey+ns5/XNyYYmhT069i9Y9UDkzWjC4yZNcHcxsEterR33qaJh3RV24XVP+88xk7HpPC2+W4ZXp5uET42q99+pC7mWMXxcIdP37/XCwAAjh6BFvp9mX5PatiVGnZlpi256ZXa8LN609pl3mjTtjKKCqKuXPomMfYSh1V0505NW3vN1FRT611eWUmqmMe+Vd9MSa+MOJvx6R/PfhR68qevLqTEJxbmJXM52S13q+52lnYOlffragcmuL0jvLudTHkjhcEhXb9Na25jdvRxe4a53UO13cP0gUnm6Dx7dk00v3HQqBuULFoDExmJzdMHXA53Xcyx1OPhCCf+StvxYxX0bkfEZLcM+a6A6+63dxWOvuGDY7IWRN+D9t07SwvDsAAQDLwWodfvSPQ7UtOW3Piyfs4oeb7X0zcsTks/HXb2RHLCFVZl+e3r4rstVTc1uR3tdJW8iJx4MT+dXJZbdeZk1OcfXfzsjxe++/RKzMWk0tw8EYd6o7Gs5W5p72BV/3jN0CR7eJI/Mil9MCRqukVjccl0Fkkky2u6XdbcVnm3o6Kjr3pwgqVb4M1YxLOPxQe6FWxoiv/GOB526XRzhngaPrWXJEbadvxYRUwhVuhjCivs6k88Tut+IVewEKpI6LsGoQeAICKAPnqbyov1e0L9Ls+4IzK+kplfXF973jo8qaJSY8+c/uvlsO8SYi5TMlMkvPK7LVUTOnF3Zx2XlZmTFnP22+8+/tdPPvrlF//7v/77159cSY8tKsgqrCqnqJUVbe2M9g5aR19l12BlzxC9f6xuYk42vdDQOyi8frM8I+dMWWU0X5ypbCy40Vx8r7tiaIyjm+NN6/kPzQfw0eOGursLvUOC/TXP/QzdmbfFUEplHxyT0aUYTa+gS2VIx/3xcLsfH2ueo9DFOIvtMu0R/9reWjC7AAA4ygRM6J9YNaZ9uXGfv7rLWHpJM+9z13ZVcyaV8XEvk10cHRF+9qdTBTmZlJwUPqe4UUVrb61tUBYIODmllKSwH7/7y28//t2v/vzbX/zHyU9OXzkfV5RTxGaWi0Ql6oai1vtlfaPsrkHW0KRINycbnRGNzgjG5ySj06IHwzy5MreyKpZZmyJXFMiVuS2tFeMTwvFp7pxJsPjYbx/9AYIsfdR6l+cEtdn97YHgXHvgPMridsU+2jz1hXYHjiehR6zo4AjcxPNHOUWf6EUEAICjQ8CE3rRXv/CCv7zFXt1lrGxVWva46zvXlx/d6uptKqDkXTob9ePXF9IS09NICcyaPLW8XMDOrixNKMyJS0+Kirp46erZK9GXk2LCSfmZJZXUKj6HLpNWylTF9ZqCu52lD8Zqe4a5AxPS4Snx4CRveJozPicYneb3jXBb2+gsdkpVdYJcUXTzJq1FW9nXz5mcFc0Z+IuPeAGqpcO7bvDmuCJy9hiKYw+9n8cRelv/YTP5U2O67aEyNicPbp4H6MmOS3V0L/OwAAB4pwmc62a7ceYJf3mTa97nr75krm7yjM+uzxtbGLWlMZEJp7659u1nVyLOk65diC7JzRawaFx6UW1FHq0ouzgnqzS3sLq4ilHOqqEy6xgcIZejlNc1NjKablU2t9E6+qr7xlldg6zeUX7fGOfBWG3/BGNwqnZgnN0zyB4YEktl+WXlMXxBzp07NTdvlmnvVkzOSGb1gnnLYYQeKcFOoT/o7CEiu9iXEVrHGjXzWNeNaxDVZss7/rU7efCEXheD2O6aZuX0ETmK58nYBwDgqBEwobfs3154Jte/Elv2pUvP6h5a6qZW5AOjjcmk+AtnY3/4Iu6bT2N++Dz2xy+vJlwhUfOKmGXlAgaTW8Nklldzqzm8Gi69nEErLqtjMoQ8ulpV29xc197F7epndw3QOwaq7vVUdo+whqa4g5Ps3rGqjsGy9l5aW09lzwPeDU1FVXViZWWSUlGsUhVcbyoanRDMrIjnTAePo0dYvhX0FYRF7/caBojc3HsIHxwj2GlNuGvdIIMsCVY9wx5m770cl0Z3OUTTdAEAOIoETuj3mpc3G4xbauOWcn6dP2kQDk7KbmtF0ZFxl86m/vhF6refkj/7KPrkx9fOfBkXdykjJoyURyrKTy3OTy2uLKipKKAVZOdTC/NVcl5DPfvWLXZbO6+7n98zyL7/oErbVartKuvTcWb1ijmjbHCK3tpb0NJR2NpFu9NS0dbOEYsLS0tjmIwUiST3xo3SgWHu9JJoxnBAoXdbCRLjunE41n00eD2oufcxT7QcWxFC71RtRN/TUpiKY9E7RBx1LWxcDcq5BEIPAMFEwIR+9eWNpRf1+k314s+yh2bBvFk9qFNIFczEOHL0lfyfvsj4/q/Zf/1N9MmPEr/4Y+QPn8Z9dzwy4qf0iNOpcZcyijNphRkFeRkZdcxylZKpUlU1NJbfukNr7aR39jE7+2va+yru91eOzvH1G43mZ03Tq7yOwdK7XYXtvZU3b5f19Irv3GFXV6eWUWMF/Ozm5uq+Qb5uTjCxyD3IneCsfEAYdeOLae9hTQLPHhKf/emyFmRIj8Obj7+OsfNa7m8GiHFaV5kdgwEAABxdAib0S09V+s16/QvVtJk3refrn9waHFfRawszyHmkqJIfTpC/+yTrk9DY745l/e03MZ/+JvLLP8Se+pT8w6cJUWezK/LZRZnFGSlJnFoqnZ7BYpNFkozGGwUt7eUdfTXdg8zOQfqDMcbILGdpTWF+Xr9gEQ1MVXX0Uzv7a9ruMzu7BG1tQrG4mFoaw6olNzfTu3rZQxOc4Ycsv28D3/rGHYz1Set9knJPhrMuBkeOkfOeXFE3ToMdP+rGdmv2rLwvZ3aw4CIAAN5BAij0cvNOg/GlanyVNbHMM/7c0j+qKClNpWQXpMQWffNJ7N+Pk//6m5jTf6P87Texf/6XiH//x4vHfhF57NeXw7/PqikU5pMp0VcvUYtTqNRYJitRoc5uaaV29jG7BhjtvVUtndSBCdbANHNiqW7pkXhxTTQ6R+8eonX0VfYN8rV3a1tb+Y2NNeVlcVWVCRpNRVsHvW+U3aej+3cP+Eu9WwmjbpwuESIfjhfPjC8hN8RCb0UsjIM3MxabLXZmFnqtNBTYGKGWwgCu+QMAwJsmYEL/cI21/Ew4a6lbWpesrquX15r6R6QFRfGlhfl55NKUiNIrP+T/+An5i98lfP5v8Sf/PfVP/yfm43+O/ttv4059lhJxOjU+PCk1MTYnM6qOkyGSZNy4VXy/q7rjAeNeV1VrZ2X7g+qhqbrxRc70KmdqhT25zBqbZ/SOVGo7SlpaK1rvsbVarlxeVkFLKCmOEIky2zsZPUPMB2MM38vv0StNGF7pPRQdqfIom9q3cV18Bwv+YKxnoScI5MclEDOBAQB4ZwiY0M+ts5efCacMzBkTb2lNsbzWNDSuoNGSiinp2anZSVezrv6UfvbzlO+OJX3zUdLXf0j98/+N++SXpK//lHbh6+zo81lJESkZKUlFlEQmM00szb6jLe/sYd7rqmlpr2jvYQzoBKMzvGm9cMEimjPxHxrYE0u1Q1P0roHqrl52Rxf3biunvr6CzUqj0xNksux796t6h2v7xpk+Fx8Vd2jD3UXuu/ARdhuocdFUj/Y+Ih8iocfJDRn/7pfQuy+wDJOkACBICJzrZoOztMEbma/SLbNm9JIF0/WRCSWdnkrJTcgiJydHpUSdJV36hnTmROL3xxK++WPyX/4l9pNfJn71p5RzX2ZEnE6LD0/OSE4upqRWVKQIRbnN2qr7nazbrbQbzaX3e1kT8+qxWeGsSbayrliwCB8a2JPLrPE59tAku3+I19nNa9GybmiqVcoShSJfc7O0vbPqwQizf8IPi54Qp/vbvxgbj74OtEvdI1jXDaH0Y8ZRD7p6gTPiCHw1ABA0BM6iX+PMmDj90xXDs7UTC5LpBfXgsJTOSC4uSCgryCzKyEmLyYg+k3LpG9LZz5J/Ok4+8Zukv/46/m+/jf3uk4RL35PiLidnJKcW5adRS5PZ7MyGxvLbzVUNmmJ1U2FrB3N0Wjk0xZ9elSw/Us6bhZPLLN1irW6+bmyG1z/Eu9fOvHmr6uatGq2Wee8eo6OT2TvAHNDVDk75btEDAAAELQET+rFF5tgCq2e0anCSMzwhGRqX9/SKa2pSaGUpdfTiukpaUQYl8RI54sfk8K9SL3yZ+f2x9BP/Fnvs1xe/+Cg87O9x8eEpmcmZhbmZpcXpVZXpPF6uXFEkVebL1HmaZtr9B+y+Mc7EknjBrJg1CieWWLrF2okFjm5OMDjCu9fO0Nyi3Wmp7uhg9z7gPOhnPRiiD0+xRmf9j7oBAAAIOgIm9N2jVX0TtR399L4xQe+gqLtP1tUt4dbllhbEMypymeXF+akZcRcSr/6QGP5V6rnPyD8cI534bcSff3X2xB/On/4yMvJcYnJsSjaZXF6aSytPp9dk8Xi5AkmeUJqtaKA0NZf1DNeNzglnDbIZvWhqhTu1wp1a4o3P8nVT0u4HdS13q+/eo3d11/X0snr7GL2DVeOznAPG0QMAAAQXARP6uz20jkHGvW5mV7+ovVPU3inr729qUNcU5ESXF5Gpeenp8QmJl5NIF7LiTuVdOJn27Z9jT34UefLjqz/8LfL8N9ERZ+KTolJy0jKqaCVVFXlMRj6PV8AT5nKFmUJptrwx/35fbZ+OMz4nmFjkT61wp1d5uvm6AV3txENJ3yC/vYPV3lHb1c3q7mU86GcMjtGnlnjTq4Fa1AwAAOAIEzChb26vaeup096va+8Wa+8J29sUoyPae1pZeVFKZWlWaW5GDomcT6KUplfnxdfEnyv48dO4c18mX/0pKzYsL/ZCVvzl9Iyk/LKCMjqNxqwp47HLRcIyPr+wri5LIMyR1+drO6s6B+n9utqRGbZugTOxyB2equ0arByZEvYMctp7att7ajt76N199MHRuvFZ/vSKYNZ4uI+DAwAABAUBE3qZskRZT2u8UaNurBbwS9gsikrJ7Gi/wawuysskJ0VGxV+JTbxCSrickng5K+VqQXxYYez5otNfJJz5Mi45oiAtpjAlKrM4k1qYQaEVF9dVVzCriyrLs2oqM8VCquZGVeOt/LbekgEdY2ym7uGyaN4gm1gU9I7Sh6a4d+6XNLbkt/ZWdgwytN20jkHGxJJ01iSbMx/sC1MAAABBRcCEXiQtkcipCnWFTFHBZuXTysn06nyRoKaSWlCcn0NJzylIp+SlFCRHpkefT7h2OjEzjpZ4ufDS96RL3yfGXcqIv0yOuZhIikyKuxKVnZxCK8pl0Cg15dl0WhaPVSCVFCjU6U0tWfd6Sh+M0kcfcnVzguFJbu8os3OwuqE5V6HJuNVZem+gpqW3on2IMTIvmloVTev5ga0sAACAo0jAhL6Ol8MV5AnEBQJxUS0zt7SERMlLLMhPrqQWlBVRyilFNEpZcVYJOSYj8mzsxe+upsVQIs+Rrp1NiA9PiQ9PSo4iZSaRM5NIyTGReenxlaUZtdXZbHoOpzZLxMuTS/LqG/KabuW23i/rH2aPTQqHJviDOt7gBL+tt6qxOVd9K+tuD613jN07xu6f4E4siadWBSD0AAAA1gAKPZOdxmSnsThZdbw8Nju3siK9ID8pKyOuhlZcQsnNI2dlkzKzSTlpsZnxl0gRp2MSwtPCf4pJikjLTqIkXk0mx6aWU0rK8im0wvxqaj6jIp9ZmVNbnc1h5kn4xWo59caNsps3y9raGYPDklGdbGBYODDMH56QtHVX37pXfLu9uGekdnxOpFuUTC7LZgyyGaN41iTy6xbQU2HfyudSbWsPvIlL2z5PSDQFDDMrONBrIfh7m0RLsNlywN+LmPCFdwB8UwV4nwicRc/PrK1Lp9em0WszWLV5DHpeaXF6dkZiRWlhTlpawtW42Msx5JiMHFJBRmxOwmVy4pXsqHPkzLjSvOSyqPNJUWHxucmUgnRKWX5xRWFJZXEhrTC/vDCnqjSPXV0srCuTi6iNKlprM/tBr2xgQN7bJ+p5wO8bEGpuF2lailruU7uH6SMPuboFvm6Br1vgTa5wp/Qcn4uPLxZvfLEXrAK2FB62DEQ5EAs9gaoGcm36NyH0H7h9TgC0HnhvCZjQ80V5dbysGia5oopcU51VU5VXUpSeQU7Ky8hIjku6dj7y6plI0rX0vJTi3KTilIicqHPkyLNppKuUlGuUiDOJ4T/FkK6lZyflpcWl56XmlOYWUvMKSnJyS/NyqkqK2NVljIpcuYimvSXoapN3dyp6e2RdnaK2+2wOP1GhTr/VWtTWU94zXNk/QR+YZPTpqkYXGGOLvi6B4LYOjEMa3rQWIBXQvvjM4T9U65fQ46ygcKCPannkYELveRFQ1F70WkNuB8AXz4H3jAAKPYXDz6czs2iV6VUVeTWVRSWFuRmp5NT41PiIpPBTUWe/Dr/8Y2zS1ZzM2JL06KKoc+ToMHLEGVLU+WRSRDbpWnpqdGZBWnFKdGpOclZxNqU4O4+SnlGUnVlDLRHU0ouzU6Wcau1NufamWHtLeO+u+PYthlSaV1EVIVdl3Oso6xyo6B2pHJqij80yh2eqJ1fZU3ofZ8bi6chK23Fc7cCat45zEeuLuQQRvegY2sDEfNrJJjrOXeglxvCWMHO4JogKgJcDAgKhd/ugFfLe0bpJt1eIrIWwbI4L+VQDHjxmfgs9eo1P9wMO34kCwFEigIOxeXVcCqM2r7Iql15VXEuvoJVSc9LzSNFpcVdSL34f+9Wxsyf/cu7Ct/EpV4ty4mmZ8SUZcZRrZxMiz8dTyKUUcklaXHpRZmE2KZOSnlOYmZOdnJIaF5OVnEgvK1EIuJlJsQJm1a0GaYO8TiGqUitreNycgoKLVTWRjTdy+4dZI9PssZm6mVX+olm0YBEub4iXN3wLr8SsHowHzseePH3BA0f7EOtBHkzo3S+EPMW9AAcSeqIV+VHfHURf0VPZiFYAxXlxcXPIIPHsTcIRevQXXcCiB953Aib06gY6T1DCYFLojKKaypLSwqL8rAJKVllmUlHEuZTLPyTHnM+98mPat59cO/tFQvKVwsI0WmZCTvSFuPBTEUnXSIUZBZS0PFJUfELEtaSoawnXriREXs4gRZfmk8sK0guykguzyZUl+WJOjUpSy6zJy0wPJ6eephRcvNfOGBkXTi/KJuZ5k4vcebNw3iyYWGYsPhYurvsWdUP4vREH6A9no5drR388BKkghP2HL0Jv9Wh1IncRF+AArhsvn15BCT3B8paIi2L01PXlE0Ru6CvifzLFJ6F3T04dBx898L4TMKGvv14jklA5vGIOl8ZmVpSXlOZlUrJSilJjKVfP2oU+6mzumS8Tvv8k8swXseE/kiJOJ187kxJxhhR5jhR3KTXucnLk+ZifTp6KunAtPSElLT4pKTIq8VokKSqaFB2ZQ06kFmUxKvKLKKT4mFMJCT8wa1Pau7jDY5Kxh+KpRfHDVfGCRbLyRGZ8Jtc/k+ifSVZ+9u3j4F6FHvttJqQrA+PrQKo2kU19GKFH5YkQek8FCIDQ41j07uawW9nc6s2B6zZRDjGsguMcj4fXoBq8A+C758D7RMCE/s5dVtPNGnVjtaqeKRUzq2nUnPTclPjM+Kvpl35KOPd1zOUfkiPPZIX/QP7pxLWTf7p87NcXP/5F+H/8+tpXf0o6/Vn6xW9yIn4qiDlXGHehkHSlODGccvVUyvlvoq+cSkyJzM9PLSQnxaSnXSUnX0xKPJuZeZHFyWjv4k4vaqbmVQ9XVIsW1eqTesMzlWFTbXqhNL9UPN5RrW3JfCs7nnIhffTehR5XtZFbPEgz8l8PQk+0y0MBDjAY64ePvgV7llvZ3qjQY5bjd/+2+1uJlwWAd4KACX3fiLC7n9/RI7zbJrjeyGYxS7PTU2MiYmOvJF05G3v+79fOfRN57WxyQnhWzHnyha+Tv/xDyq8+DP+H//T1L/7buRP/lnrmRNGV78pjz9LjzlfFh9GSLleSr1VlxFSTI2nR5/LOfRcRceVUYvKpnPxwWlWCsoH6YFg2PtMwMCnsHUdUvbwAABSqSURBVGPPmVTmFzeXnqhn10QLT6QLP4unzeyNPdXGnsrHwrtF3TjUGT0KSuy68SD0dtz6Bkdu9pgWHPe9rVS2w/Ck1nsBkDng3LKnqBvELWCjbrC6SVg2XNeNy6eP47ohwL/BWLfAIRB64H0nYEI/syKZXpSNTUt7BgR3mmt53KKcrPjIqxejwq9Gh0dHXYi+di46PjwpLS49LSYt4VJW2JclH/0T6X/+5x/+13/57tf/cPHj/xf9+e9I3x/P/Ppj0sk/xX715+jv/xp7+ouEU5/H/f34lc+OfZNIOk+jx8gbChvvlN28V9kxwB6cEvRP8xvv5ej04uWnDQ9mqluHC4ZWmFOPecPLVfpN0dq21Ofie4mj9zYYi6ezrs9IYTJ0H370JPT2axHm5l3ocZX0EHH0brpJWDacejsutXgbjHXvmTxHyhO9YXgarQWA94qACb1+Q7LySDqzIh7Uce/dr1Eoi2m0ZHLK1air5xKiI1Jj49LiE9ITSOkJiSnRMXGXEj7/45XjoZF/+Ofz//qP3/7iv3/+y//x2ce/+v6rv1z68bOr358I+/bTM3//9MfvPvv+8qlL+eRcLquiua2uuaPy5r2yBm3hjfbitsGa/mnu0Dy/oS1raJmnMwtuD+Sq7yd3z1XM/CyaXuc+XGOuPvNvmWLPM2O9hFfa/0Vb9IRBhy7lOi7VEfjosV8cdBWvUIc/sOleAOJvFh5iZixxlAu2bNissCGhqDITqbzVf6HHvIWA0APvOwET+rWXQssL0fIj/vhcbf8Is62Drq4vYbGyiiiJBbmkkrxUWlEmrSi7ODeFkp6QR0668OPpuPCYtPjklJj4xMgIckJUQVYSrTiNUZkh4OTcaKi4f6+uu7Oup4s1PiZeXr3x6Hnb+JL8/jCjY4wxvCCaNikfWhRTa/L+BZbOIpx6LBlYYfbMV46Y6+Y3Zfpd1dw627gJyxQT4lnoAQAIJgIm9Bs7wvVdsfGpYEbP1s3XjUzxuvrZN1sqrjdViMT5nLosoSBfKikSCSlCQb5MWtjYQLvbyunqFvc+kIzpVCt6rdGiXdJfX3tyZ1Evn10WrZilxnX56pp4ycRbtAgXH8kWN1SW7eYX1o6n1jbD5g39VtMTa6tl/+bSS5Vhu/GJVbthvbP8Srn4UmqxNpq2pI+tysBWVjABQg8A7w8BE/rHO6JHO5K1V1LzC6n+iXz5sXzBrJgzKMfnRIOTvJ6R2q4hRu8oa2iKq5sXTy1J5kyKeYti8ZFqZUOt/7nB9LzRstm09uq6ebPe9EJtfK7QP5WtPhXb0vJTsemV0rilNG3XW3btybyjNu+oTdsqw47CtKMw7iptybSnsuypzLtK8648sJUVTIDQA8D7Q8CEfn1Ptr4ne7yjeLStXNtSmTfrjc/V+p/Vq0/qF9bkDw2iab1wzixeXlfYgiBXn0tXX0r0r6SGLZlxW27aUZh3leZdpWFLpn8lXdkUL78QLT0XOpNxW2rclpp2ZOZduWVPYdlTmHfl5l25aUdmS7Z/EXuV5l2w6AEAAAIn9AAAAMC7CQg9AABAkANCDwAAEOSA0AMAAAQ5IPQAAABBDgg9AABAkANCDwAAEOSA0AMAAAQ5IPQAAABBDgg9AABAkBM4oV9uOvH70x/mDiI2GZnnTn/4e7rW0yl0LfKPwDJjDQ2xag6fj8YaEmJPyNzCfNw4Yw3FOxJzfEiINSTUOuP1LrwVhoqTBQAA7zWBFnqkXrtv8XTuuyr0M9ZQp3pqXFqsCbOGUq1Wq3WGag0Jsx+LuzHMcfoMFSXlM1RrSIg1DFE+2xaUUmvQmu6tMMiNAAAANgIr9PT43NPxHY4tHfQTuXSXgtt0/3enP/yd4xgci34w/vdk5jI2b89mslMrbUIZEmJXPeRZmF1+ZKtxSbbtFA36D2R3grNxxhqKUF7cs1Cg5TskxErVII7ELYzX/gxxU/ZOAu8lIyzEqtG4agm3xgAAOIoEWOi1HXSn90abS2Z2OBXcyDxn1/d5EfnDc03zVl9dN9RQHHOVGmoXYpeZjNRWr3/4ni0Sjdu1rFar02bH3Uhg0WvCEBcKcQh6qHUGUQY7XrsEjTUk1EoNI3TdhCE7rVDrDGILskhhIY5exNYNIP4OgPsLAIC3R6CF3joY77TNzzXN4yq4u757EHoC9cQ9ICyEUCI97PKarRVxmD0TNzvdLvTuGx1/Y1zwYc73DDeddflhiEtixci3m5SjTve4xb1D8vA3AABHkYALvVVr89500E+IjBgF1+baXTcf+in0IYjkFB1NmGujy7Nh2+JujeLt8jVbx/GursJ3ix7jVbcdgLCskde15e/8A/daOIXRYD0wWC8/RujRW6ihIPQAEOQEXuitHfQPcwe1uWTmMsb5fvqEyIg60n+L3kmY03dMYHoTOa89+7Xxs9XguER89dFrsIY8dcaxEV0GpOC6yzom6gZVGM9vJ2DRA8B7z2sQeutg/O892ezaXH8seqQzHc/VbjPANchAF7fDcHb5nC3KJEfga9QNrkXvkFqnhmrC7P2Bq1ROkDpOUBjnWbhDCyiPU4hVQ+yjB6EHgKDkdQi9VZvrCKjHbLSH3Dj8+P5H3bg7WMI0LhOYGoqNw7Ft0eDt8jFb52Cpuz/H1zh6ROQ7Vj0du8KodlcSTogLQuj9KoxLoN1DiQiibkDoASAogZmxbwf8qB6r1WrrbMLwdgAAAById13oMQYspLeVAAA4urzrQh/kEAf/AAAABAoQegAAgCAHhB4AACDIAaEHAAAIcgK9euXvXAm7ctlhwJ3fhBf/7hXCCahvCR9XX3hHOGylBe7W3pGfDwCOBK8ljh717zsm9DjLT75VjpbQH7bSAndr78jPBwBHgtcm9FYj8xxmFQSE1Y86cjDetvEcPd52ivu0KdvqLojZTFbMJztCrCGOOZ9UKuowK2bqkHP5yVArNQw1gcg1fzUMYTD6swsFZnHgGWtoqDXMbd5WGOK+kPObNG6Z4EzLCrWGORZO8LSqcKCWKUasnfA2F45GlwQAAK+8ToseOzl2MP73bisVW43Mc441cDroH+JNi7Va0ct4ua8VjF5txsP6ujNU11IBdi0Ls+cZGupy6Rx4FxLs4sC4t4AsMHKBBLdFN5ETrFALLGPWU/O86Obhlil21t5bXzjaWRIAAHzhNfrocRadt4u71WWzo7oHx0uAO25GLpFY4K4H6cS5cJj9D4dhqAmzUh3yfahdyAK7LyVGsA6a80S7qBF/tMR9jUzkUmj4PuvALWrmuv23vXA0trYBAPDI63PdOOx35KqWLqFHOHbcN7oTIKF3d9DbJIMaatXY5A8hggfb5bg23rrwnhe8dBaYYOVLTDeD2mh1W4fZQ0kOukwxcuFP3Eleb2zhaHDQA4BfvD6hdyxM//YseuynmjQIJwlivckwqjXUYZVrDr3LVeA3a9FbEYehRDBQFr3Gyzen3tzC0e61DQCAR16rRY+zJP1hfPQ+Cj2RHuEHVmqsoQ7XsCbM5XM/+C4H2MWBiYX+8D563HWYCUtyoGWKkZX2dheOhsBKAPCXNxtH7znqJreJ6THqxl0lMasQa3CDWBxShXXQW117kd/kwwS3+LuLcHFgYqE/eNRNGOqmPMUaYQJX/F+m2L3SiBwsr3vhaHDQA4C/vEszYwMRcf9+LZ7+DkfcAwDw7vDWhd5hzv/uNKHfBhYrhoSXAADwkbcu9AAAAMDrBYQeAAAgyAGhBwAACHJA6AEAAIIcEPo3woYhlDn3VsJjZoZ0IQrDmw5EOsz9vr26OjgbhlCmjrrxhq42M6QL0a4f8OSFubfQHnBYDztAjb0rhT96HEGh3zCEMvtDmP1hC74difNIvKQq+kPwd9nRaPt9bFIzQ7oQr03W9zIf7Hir1WorM/aO1sOYXu709WC/bujQS3/P1Gj7Q5j93qsUl4W5kINe11nnB6qrg9/vAZgZ0oUwPbdPQhklrF7H7RPdgv2imBO9NtQNQyh+ngeqMcfv69dzAViPstAjjT7CRuNonRgL0Sb0HqXEfhUddcjetgiTYi5M4X4JvNwQT6YXOcMc73a6o8WjL2rf6MrTcfuY9AZsT9sv4r9h7lTbg5l7BErkky7gtCvfcb9fhzHxGmrb9rPaWrvDznD06F5+aPthOBXi3sZwTnRk6HjrsjcwR9eIax5huiXHK+Z6mGujD8+jT4UECHnHhd75tHhLCoMG37LGbdm+NayFObfO4yVV4bwWoTHiEHEvKWzhJVVBkAm2QeM+xjhPLPqhcpzlyEej7Q9h6kKJLhpIDib09p/bVjN+Pc+OG7d1ut4rCgffhJ6g78RNOuoG8U/sPzjtSqFzmOEGRIWjRRmJrS/ErViPGop/146rYxPmlchpM21YnU+QS+hdXbsP71Ig9AflHRd6PA5kec0M6RCn+GxBYC/nLvTrYb6LCEp//XoDcDuF8Il1lcduXjn8VzaZeDO+Bdx7dIoFUXWhzEM/Hmn7j0LFmpMOK8FjJhqto5zOH3phzoe2gemKMPd70Bca33A25hl0O7Rf0dY28ETT1gbw699ThTszR96Xs1f2+mMhejtnu0Xqu6feBc9ThD7+zTbso8pRF3oibztGfwktYjwzBPUMzwzpCC0XV8J5pNH2l4664GrZYQvrYThlJnx9QdtrVqvVo2nmLLbzIXmdnk0fX18cN/ISbyDBarXi9d/e7tGKcRyjLEcfXcDOhjGncRXAF6+LT++ar8mVbBd6AuvB9t6GV3KP3Y89N8crEeI3QmboUlWUT8xeG15qGzkMgOt7xLlNn1sXmPkeORpCj/nJ7ULpfEQX5txbjEOAnDaOLkzrNH+QFj1e60c/86HauVC03UR1WlI47h0HC16c+56eCpTGvaQOzfkp9C+pCsdDuDAXwuwPGzrMSOMB8NekdRxvK+2CfavnlwB3U85unuM66/FADeFgexqs4wsN5qUQfb+Hcvd7B/E4OKxsrYGqQPRSeL+y6ywvhgvqncZ2lqv+7buQHnYPXQvyFOQmTDdJUFHuryY4Fr0/b+fvMe+S0OOKF/rJJ8bdL+ky9m1ODIS/xZvQO1+KtXOhDmPcJfTIrLwKPWHMj6emae+lvProMaO1mCfHqXcLBAPLr9EI8kvoUb8d9t5d/aXPg3W+9mfo8RviQX68G/HFog+g0KMvZ/dTuaxvjVYXahN6wkBPVxPy5LrBM5jcmzfBaxyutYTT2NA+GWfB3IoNQh84XrfQ+zyaStAm/PIMYJsFwpgNHXo544/Qu67u8Ce63je16zOvV+jRsu4cufLFose8RiD93dp1q1fjK2D4LPQ4+uLujkNWCH7hnT4c23ubL33YDGZEHVfpfPV6Ye43kGOw7uB5pV+iLHrcF1xHxxC2gFdCj28h+F4U394OMe8EjmpfR46g2B9zTIYg9IHjXbLo3cE68hCuQLTSEXp+EeaD/0K/HoZwR9r9y7aznFc/uOvG86uu7RmwP5l++OgR5SF4OA1Er/aHBN2F+OTKIIwH9zUmEtUjIlqFzvv0Jfc5Fnium7AFxGgt9ma9p8D76PEblT28B+WDwt6a8xh7qbCV74+7CRNV6cvBrjFb1DPosYpA6APHuy30NlyPPeJHdbl0PLcYlzPR49gOXvt2XsIm9Aq0sxLxZurJdkM/Pz5ECCDegewvE84oaf+EHlsG28GvbW6hx3EUPOEjnEqDhqgrJRq89eknxgvfxPulfBZrvI4NJxDocLg7plyajjLk0dE1TuMd+6Sg7Gj/hR77oxC0SYfQI+MpXYH/iKEvbIZ+RrL6UZHvIUdB6F3WIp7Qe3TLuk0tIbDoCR0syGE6vMM8WPTYwrtJG6GvwOFV991Hj1ceT1bna7Do8R9+5J0SXdTbqDVhT4zAbVQDVSrM6fj+K8TP4cyNqsX1b/iZAqD1jhY7hDZyCYQeG6iKmpeEGVnFNHLcqYU+q+0CTueNcd3YK98ZhGYbGbaNe6FbCE6LAov+oBwNoXcYCzZXBkroiVYgQMic+14vjcN1rq1JeXu8EW0R78GwR0T0uzzIjuQWZ+kwvg4cR+/VorfiRkH4OeaJx8GF3lueXoQSM+aMHfTDFy8PdrqftrwNYlcVZumeQ9YzbqfoJvQEzcPju6/vFr3j10TPTSHEKfSoYCHb86v1HmSJc2mvHSeiltx6NR82BiNHROgdgRmhGKEf8ujMJWy72DcDoplH3ifveLDoic8icuC4FiA7rNAbPM4b0IUSOi7eJaFHxcV7OMCZMyqam8jG94iHMBtfTvQhvPKQ9bxAZNHjvPO5/RaBEXrE+xAqyJIIu9BrkeFzXoaOCQGhPyhHReitGq1jZjxSoD3Lhy9CbyVYNwbZpA4j9B4SziQv5FoiBxD69TD7WIL3+YR4+PTcEhFoofdhsI6gDM5JA37FvTjtTR/O8tGhQaRfh6hnXKFHx2UR93CBEHpMg/fhLPeKRTlzfJgWhy0kCL3/HBmht1qtBIOxyF24c+7xJ+IjH8gw92cD2f78lmyr1erVosfzEeM8wDa8++iRblnso+7b4+FpfrwPeB8680fo8ePtvON5lpO3kh986MKPeQOHqmdc1w1uAC4OhxV6/B/F29wFrP/NzTZCzW30jI+9Agi9G++00PsdRI9uLi6hRz8eOCYbTsw74snxZtF7nNNPlHxYO9ND6Bu2xbs95z4NG7qOP6TKWz0HFPlr0fswPx4N0sT2dzoucbH9ycHHSx+2nn2w6InBFXr3SRvE1yUsOXY+l/vYgGv9JbyWgHzSvQdcvrYpx0HMOy307wqY8TQ/zvLHonc7Fx3K+a7HFeDGmx8I4sUXkWBtW5/rB9UFBqTAbzDwA2+1D6vV6tsrhQeHONEtIBTcez/tYYE/Vz6elrTzeglf58kDWEDoAQAAghwQegAAgCAHhB4AACDIAaEHAAAIckDoAQAAghwQegAAgCAHhB4AACDIAaEHAAAIckDoAQAAghwQegAAgCAHhB4AACDIAaEHAAAIckDoAQAAghwQegAAgCAHhB4AACDIAaEHAAAIckDoAQAAghwcoYcECRIkSEGZQOghQYIEKcgTCD0kSJAgBXn6/1yLWEdC/NYBAAAAAElFTkSuQmCC" alt="" />