POJ 3342 - Party at Hali-Bula 树型DP+最优解唯一性判断

好久没写树型dp了...以前都是先找到叶子节点.用队列维护来做的...这次学着vector动态数组+DFS回朔的方法..感觉思路更加的清晰...

关于题目的第一问...能邀请到的最多人数..so easy了...很基础的树形DP..dp[k][0]表示以k为根的子树不选k点时的最大人数...dp[k][1]代表选k点时的....

关键是题目要求判断是否最优解唯一...首先如果状态a可以转移到状态b并且状态a达到最优方案的方式不唯一....那么转移得到的b最优方案的方式也必然不唯一...那么可以用一个布尔型数组uni[k][tp] ( k代表哪个点,tp=0或者1..和dp里的意思一样...)来记录当前状态最优解是否唯一..转移的时候跟着转移...

如此一来..只要找到源头就可以了..设点p以及其父亲节点f

因为 dp[f][0] = dp[f][0] + max( dp[p][0] , dp[p][1] ) 并且f点若不使用,就不会再影响到更上层的点...所以若dp[p][0]==dp[p][1]..说明uni[f][0]=false..不唯一...

但是还要注意..最后的结果若dp[root][0]==dp[root][1]...就算uni[root][0]=true,unit[root][1]=true..方案也是不唯一的...这个很显然...

Program:

#include<iostream>
#include<stdio.h>
#include<string.h>
#include<set>
#include<ctime>
#include<algorithm>
#include<queue>
#include<cmath>
#include<map>
#define oo 1000000007
#define ll long long
#define pi acos(-1.0)
#define MAXN 205
using namespace std;
map<string,int> mymap;
vector<int> Tree[MAXN];
int n,dp[MAXN][2];
bool uni[205][2];
int ReadStringToInt(int &num)
{
char str[105];
string s;
scanf("%s",str),s=str;
if (!mymap.count(s)) mymap[s]=++num;
return mymap[s];
}
void dfs(int x)
{
int i,m=Tree[x].size();
dp[x][0]=0,dp[x][1]=1;
for (i=0;i<m;i++)
{
int p=Tree[x][i];
dfs(p);
if (dp[p][1] || dp[p][0])
{
if (dp[p][1]>dp[p][0])
{
dp[x][0]+=dp[p][1];
if (!uni[p][1]) uni[x][0]=false;
}else
if (dp[p][0]>dp[p][1])
{
dp[x][0]+=dp[p][0];
if (!uni[p][0]) uni[x][0]=false;
}else
dp[x][0]+=dp[p][0],uni[x][0]=false;
}
if (dp[p][0])
{
dp[x][1]+=dp[p][0];
if (!uni[p][0]) uni[x][1]=false;
}
}
return;
}
int main()
{
while (~scanf("%d",&n))
{
int i,num;
if (!n) break;
for (i=1;i<=n;i++) Tree[i].clear();
mymap.clear();
num=0;
ReadStringToInt(num);
for (i=1;i<n;i++)
{
int ep,boss;
ep=ReadStringToInt(num);
boss=ReadStringToInt(num);
Tree[boss].push_back(ep);
}
memset(uni,true,sizeof(uni));
dfs(1);
printf("%d ",max(dp[1][0],dp[1][1]));
bool f=true;
if (dp[1][0]==dp[1][1]) f=false;
else
if (dp[1][0]>dp[1][1]) f=uni[1][0];
else f=uni[1][1];
if (f) printf("Yes\n");
else printf("No\n");
}
return 0;
}
上一篇:Linux系统-解压缩命令集合


下一篇:压缩感知“Hello World”代码初步学习