uva 11248 Frequency Hopping
题目大意:给定一个有向网络,每条边均有一个容量。
问是否存在一个从点1到点N。流量为C的流。假设不存在,能否够恰好改动一条弧的容量,使得存在这种流。
解题思路:先依照题目给出的边建好图,然后跑一发最大流,得到原始最大流C1,假设C1==C或者C==0时。能够直接输出possible。假设不存在这种流。那么開始找割边,将这些割边的容量添加C,再求最大流。假设能够,那么要输出全部的方案。改动全部割边后,仍没有符合条件的流,输出 not possible。
优化:1)第一次跑最大流的每条边的流量情况,能够留着,接下来能够在它的基础上增广。2)每次求最大流,不用求完,当流符合条件即>=C时,就可以返回成功。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <queue>
using namespace std;
typedef long long ll;
const int N = 505;
const int M = 20005;
const ll INF = 1e18;
int n, e, s, t ;
ll c;
struct Edge{
int from, to;
ll cap, flow;
};
int cmp(Edge a, Edge b) {
if (a.from != b.from) return a.from < b.from;
else return a.to < b.to;
}
struct Dinic{
vector<Edge> edges, tempOE;
vector<int> G[M];
vector<int> MCut;
Edge rec[M];
int vis[N], d[N];
int cur[M];
ll ans;
void init() {
ans = 0;
for (int i = 0; i < e; i++) G[i].clear();
edges.clear();
}
void addEdge(int from, int to, ll cap) {
edges.push_back((Edge){from, to, cap, 0});
edges.push_back((Edge){to, from, 0, 0});
int m = edges.size();
G[from].push_back(m - 2);
G[to].push_back(m - 1);
}
int BFS() {
memset(vis, 0, sizeof(vis));
queue<int> Q;
Q.push(s);
d[s] = 0;
vis[s] = 1;
while (!Q.empty()) {
int u = Q.front(); Q.pop();
for (int i = 0; i < G[u].size(); i++) {
Edge &e = edges[G[u][i]];
if (!vis[e.to] && e.cap > e.flow) {
vis[e.to] = 1;
d[e.to] = d[u] + 1;
Q.push(e.to);
}
}
}
return vis[t];
}
ll DFS(int u, ll a) {
if (u == t || a == 0) return a;
ll flow = 0, f;
for (int &i = cur[u]; i < G[u].size(); i++) {
Edge &e = edges[G[u][i]];
if (d[u] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap - e.flow))) > 0) {
e.flow += f;
edges[G[u][i]^1].flow -= f;
flow += f;
a -= f;
if (a == 0) break;
}
}
return flow;
}
bool MF() {
while (BFS()) {
memset(cur, 0, sizeof(cur));
ans += DFS(s, INF);
if (ans >= c) return true; //不用完整地求最大流,当流量大于等于c时,该改动就是可行的
}
return false;
}
void getMincut() { //求最小割
MCut.clear();
for (int i = 0; i < edges.size(); i += 2) {
if (vis[edges[i].from] && !vis[edges[i].to]) {
MCut.push_back(i);
}
}
}
int solve() {
int cnt = 0;
tempOE.clear();
getMincut();
ll f = ans; //求完初始最大流,记录当前总流量
int es = edges.size();
for (int i = 0; i < es; i++) tempOE.push_back(edges[i]); //记录初始最大流每条边的情况
int cs = MCut.size();
for (int i = 0; i < cs; i++) {
edges[MCut[i]].cap = edges[MCut[i]].flow + c;
if (MF()) {
rec[cnt++] = edges[MCut[i]]; //若将该边的容量加上c之后。总流量大于等于c。则改动该边是可行方案。记录该边
}
ans = f; //每改动一条边。且检验完之后,恢复初始状态
edges.clear();
for (int i = 0; i < es; i++) edges.push_back(tempOE[i]);
}
return cnt;
}
}din;
void input() {
s = 1, t = n;
int u, v;
ll cap;
for (int i = 0; i < e; i++) {
scanf("%d %d %lld", &u, &v, &cap);
din.addEdge(u, v, cap);
}
}
void solve() {
if (din.MF() || c == 0) {
printf("possible\n");
return;
}
int cnt = din.solve();
if (!cnt) {
printf("not possible\n");
return;
}
sort(din.rec, din.rec + cnt, cmp); //记得排序
printf("possible option:(%d,%d)", din.rec[0].from, din.rec[0].to);
for (int i = 1; i < cnt; i++) {
printf(",(%d,%d)", din.rec[i].from, din.rec[i].to);
}
puts("");
}
int main() {
int Case = 1;
while (scanf("%d %d %lld", &n, &e, &c) == 3) {
if (!n && !e && !c) break;
din.init();
printf("Case %d: ", Case++);
input();
solve();
}
return 0;
}