synchronized同步代码块
用关键字synchronized声明方法在某些情况下是有弊端的,比如A线程调用同步方法执行一个较长时间的任务,那么B线程必须等待比较长的时间。这种情况下可以尝试使用synchronized同步语句块来解决问题。看一下例子:
下面例子是优化后的例子 使用代码块锁,原先例子是方法锁,就是同步 必须要执行2个for
public class ThreadDomain18
{
public void doLongTimeTask() throws Exception
{
for (int i = 0; i < 100; i++)
{
System.out.println("nosynchronized threadName = " +
Thread.currentThread().getName() + ", i = " + (i + 1));
}
System.out.println();
synchronized (this)
{
for (int i = 0; i < 100; i++)
{
System.out.println("synchronized threadName = " +
Thread.currentThread().getName() + ", i = " + (i + 1));
}
}
}
}
public class MyThread18 extends Thread
{
private ThreadDomain18 td; public MyThread18(ThreadDomain18 td)
{
this.td = td;
} public void run()
{
try
{
td.doLongTimeTask();
}
catch (Exception e)
{
e.printStackTrace();
}
}
}
public static void main(String[] args)
{
ThreadDomain18 td = new ThreadDomain18();
MyThread18 mt0 = new MyThread18(td);
MyThread18 mt1 = new MyThread18(td);
mt0.start();
mt1.start();
}
运行结果,分两部分来看:
synchronized threadName = Thread-1, i = 1
synchronized threadName = Thread-1, i = 2
nosynchronized threadName = Thread-0, i = 95
synchronized threadName = Thread-1, i = 3
nosynchronized threadName = Thread-0, i = 96
synchronized threadName = Thread-1, i = 4
nosynchronized threadName = Thread-0, i = 97
synchronized threadName = Thread-1, i = 5
nosynchronized threadName = Thread-0, i = 98
synchronized threadName = Thread-1, i = 6
nosynchronized threadName = Thread-0, i = 99
synchronized threadName = Thread-1, i = 7
nosynchronized threadName = Thread-0, i = 100
...
synchronized threadName = Thread-1, i = 98
synchronized threadName = Thread-1, i = 99
synchronized threadName = Thread-1, i = 100
synchronized threadName = Thread-0, i = 1
synchronized threadName = Thread-0, i = 2
synchronized threadName = Thread-0, i = 3
...
这个实验可以得出以下两个结论:
1、当A线程访问对象的synchronized代码块的时候,B线程依然可以访问对象方法中其余非synchronized块的部分,第一部分的执行结果证明了这一点
2、当A线程进入对象的synchronized代码块的时候,B线程如果要访问这段synchronized块,那么访问将会被阻塞,第二部分的执行结果证明了这一点
所以,从执行效率的角度考虑,有时候我们未必要把整个方法都加上synchronized,而是可以采取synchronized块的方式,对会引起线程安全问题的那一部分代码进行synchronized就可以了。
两个synchronized块之间具有互斥性
如果线程1访问了一个对象A方法的synchronized块,那么线程B对同一对象B方法的synchronized块的访问将被阻塞,写个例子来证明一下:
public class ThreadDomain19
{
public void serviceMethodA()
{
synchronized (this)
{
try
{
System.out.println("A begin time = " + System.currentTimeMillis());
Thread.sleep(2000);
System.out.println("A end time = " + System.currentTimeMillis());
}
catch (InterruptedException e)
{
e.printStackTrace();
} }
} public void serviceMethodB()
{
synchronized (this)
{
System.out.println("B begin time = " + System.currentTimeMillis());
System.out.println("B end time = " + System.currentTimeMillis());
}
}
}
写两个线程分别调用这两个方法:
public class MyThread19_0 extends Thread
{
private ThreadDomain19 td; public MyThread19_0(ThreadDomain19 td)
{
this.td = td;
} public void run()
{
td.serviceMethodA();
}
}
public class MyThread19_1 extends Thread
{
private ThreadDomain19 td; public MyThread19_1(ThreadDomain19 td)
{
this.td = td;
} public void run()
{
td.serviceMethodB();
}
}
写个main函数:
public static void main(String[] args)
{
ThreadDomain19 td = new ThreadDomain19();
MyThread19_0 mt0 = new MyThread19_0(td);
MyThread19_1 mt1 = new MyThread19_1(td);
mt0.start();
mt1.start();
}
看一下运行结果:
A begin time = 1443843271982
A end time = 1443843273983
B begin time = 1443843273983
B end time = 1443843273983
看到对于serviceMethodB()方法synchronized块的访问必须等到对于serviceMethodA()方法synchronized块的访问结束之后。那其实这个例子,我们也可以得出一个结论:synchronized块获得的是一个对象锁,换句话说,synchronized块锁定的是整个对象。
synchronized块和synchronized方法
既然上面得到了一个结论synchronized块获得的是对象锁,那么如果线程1访问了一个对象方法A的synchronized块,线程2对于同一对象同步方法B的访问应该是会被阻塞的,因为线程2访问同一对象的同步方法B的时候将会尝试去获取这个对象的对象锁,但这个锁却在线程1这里。写一个例子证明一下这个结论:
public class ThreadDomain20
{
public synchronized void otherMethod()
{
System.out.println("----------run--otherMethod");
} public void doLongTask()
{
synchronized (this)
{
for (int i = 0; i < 1000; i++)
{
System.out.println("synchronized threadName = " +
Thread.currentThread().getName() + ", i = " + (i + 1));
try
{
Thread.sleep(5);
}
catch (InterruptedException e)
{
e.printStackTrace();
}
}
}
}
}
写两个线程分别调用这两个方法:
public class MyThread20_0 extends Thread
{
private ThreadDomain20 td; public MyThread20_0(ThreadDomain20 td)
{
this.td = td;
} public void run()
{
td.doLongTask();
}
}
public class MyThread20_1 extends Thread
{
private ThreadDomain20 td; public MyThread20_1(ThreadDomain20 td)
{
this.td = td;
} public void run()
{
td.otherMethod();
}
}
写个main函数调用一下,这里"mt0.start()"后sleep(100)以下是为了确保mt0线程先启动:
public static void main(String[] args) throws Exception
{
ThreadDomain20 td = new ThreadDomain20();
MyThread20_0 mt0 = new MyThread20_0(td);
MyThread20_1 mt1 = new MyThread20_1(td);
mt0.start();
Thread.sleep(100);
mt1.start();
}
看一下运行结果:
...
synchronized threadName = Thread-0, i = 995
synchronized threadName = Thread-0, i = 996
synchronized threadName = Thread-0, i = 997
synchronized threadName = Thread-0, i = 998
synchronized threadName = Thread-0, i = 999
synchronized threadName = Thread-0, i = 1000
----------run--otherMethod
证明了我们的结论。为了进一步完善这个结论,把"otherMethod()"方法的synchronized去掉再看一下运行结果:
...
synchronized threadName = Thread-0, i = 16
synchronized threadName = Thread-0, i = 17
synchronized threadName = Thread-0, i = 18
synchronized threadName = Thread-0, i = 19
synchronized threadName = Thread-0, i = 20
----------run--otherMethod
synchronized threadName = Thread-0, i = 21
synchronized threadName = Thread-0, i = 22
synchronized threadName = Thread-0, i = 23
...
"otherMethod()"方法和"doLongTask()"方法中的synchronized块异步执行了
将任意对象作为对象监视器
总结一下前面的内容:
1、synchronized同步方法
(1)对其他synchronized同步方法或synchronized(this)同步代码块呈阻塞状态
(2)同一时间只有一个线程可以执行synchronized同步方法中的代码
2、synchronized同步代码块
(1)对其他synchronized同步方法或synchronized(this)同步代码块呈阻塞状态
(2)同一时间只有一个线程可以执行synchronized(this)同步代码块中的代码
前面都使用synchronized(this)的格式来同步代码块,其实Java还支持对"任意对象"作为对象监视器来实现同步的功能。这个"任意对象"大多数是实例变量及方法的参数,使用格式为synchronized(非this对象)。看一下将任意对象作为对象监视器的使用例子:
public class ThreadDomain21
{
private String userNameParam;
private String passwordParam;
private String anyString = new String(); public void setUserNamePassword(String userName, String password)
{
try
{
synchronized (anyString)
{
System.out.println("线程名称为:" + Thread.currentThread().getName() +
"在 " + System.currentTimeMillis() + " 进入同步代码块");
userNameParam = userName;
Thread.sleep(3000);
passwordParam = password;
System.out.println("线程名称为:" + Thread.currentThread().getName() +
"在 " + System.currentTimeMillis() + " 离开同步代码块");
}
}
catch (InterruptedException e)
{
e.printStackTrace();
}
}
}
写两个线程分别调用一下:
public class MyThread21_0 extends Thread
{
private ThreadDomain21 td; public MyThread21_0(ThreadDomain21 td)
{
this.td = td;
} public void run()
{
td.setUserNamePassword("A", "AA");
}
}
public class MyThread21_1 extends Thread
{
private ThreadDomain21 td; public MyThread21_1(ThreadDomain21 td)
{
this.td = td;
} public void run()
{
td.setUserNamePassword("B", "B");
}
}
写一个main函数调用一下:
public static void main(String[] args)
{
ThreadDomain21 td = new ThreadDomain21();
MyThread21_0 mt0 = new MyThread21_0(td);
MyThread21_1 mt1 = new MyThread21_1(td);
mt0.start();
mt1.start();
}
看一下运行结果:
线程名称为:Thread-0在 1443855101706 进入同步代码块
线程名称为:Thread-0在 1443855104708 离开同步代码块
线程名称为:Thread-1在 1443855104708 进入同步代码块
线程名称为:Thread-1在 1443855107708 离开同步代码块
这个例子证明了:多个线程持有"对象监视器"为同一个对象的前提下,同一时间只能有一个线程可以执行synchronized(非this对象x)代码块中的代码。
锁非this对象具有一定的优点:如果在一个类中有很多synchronized方法,这时虽然能实现同步,但会受到阻塞,从而影响效率。但如果同步代码块锁的是非this对象,则synchronized(非this对象x)代码块中的程序与同步方法是异步的,不与其他锁this同步方法争抢this锁,大大提高了运行效率。
其实无论是方法所还是代码锁都是要以一个对象监视器来锁定,锁定的代码是同步的,锁this是当前对象,锁String是String这个对象,锁Object是Object这个对象,互不干扰,如果有其它线程调用同样用到跟上面锁this、Objcet、String相同对象的方法或代码,就需要等待同步,锁代码块比锁方法更加灵活。因为锁方法锁的是this 也就是当前对象,当一个线程正在调用当前这个对象的所方法时,导致其它线程调用不了该对象的其它锁this的代码,也调不了所有该对象的锁方法
锁的是当前这个线程,针对锁的对象的这段代码或方法,一次只能一个线程运行,其它线程运行到此的话会暂停,如果是执行其它非锁的则是异步的,注意这里不要被多线程搞迷糊了。单个线程执行的时候都是同步的,当这个线程被阻塞后,之后的代码(锁内的和锁外的)无论什么都不会执行,只有当唤醒或者恢复正常时才会继续往下走,走完锁内的代码就会放锁,然后继续走剩余的代码
注意一下"private String anyString = new String();"这句话,现在它是一个全局对象,因此监视的是同一个对象。如果移到try里面,那么对象的监视器就不是同一个了,调用的时候自然是异步调用,可以自己试一下。
最后提一点,synchronized(非this对象x),这个对象如果是实例变量的话,指的是对象的引用,只要对象的引用不变,即使改变了对象的属性,运行结果依然是同步的。
脏读数据的情况
PS:这里还有重要的一点,线程调用顺序是无序的,在一个没有上锁的方法里面调用任意已经上锁两个的方法,不会保证调两个上锁的方法会同时阻塞被一个线程调用,而是第一个上锁方法阻塞,然后第二个再阻塞,调用第一个方法和第二个方法的中间是异步的,这里做一点操作的话,比如if分支判断,极有可能导致脏读数据发生,参考下面:
脏读出现了,出现的原因是两个线程以异步的代码调用2个同步的方法,中间做了if分支判断并且sleep延迟,由于调用是在没有同步的代码里面,第一个线程进入了if睡觉,还没开始做插入操作,第二个线程又进入了if,所以导致脏读出现
解决 使用锁方法 或者 锁代码块都行 在分支前面锁定代码块
打印 listsize = 1 脏读不再出现
细化synchronized(非this对象x)的三个结论
synchronized(非this对象x)格式的写法是将x对象本身作为对象监视器,有三个结论得出:
1、当多个线程同时执行synchronized(x){}同步代码块时呈同步效果
2、当其他线程执行x对象中的synchronized同步方法时呈同步效果
3、当其他线程执行x对象方法中的synchronized(this)代码块时也呈同步效果
第一点很明显,第二点和第三点意思类似,无非一个是同步方法,一个是同步代码块罢了,举个例子验证一下第二点:
public class MyObject
{
public synchronized void speedPrintString()
{
System.out.println("speedPrintString__getLock time = " +
System.currentTimeMillis() + ", run ThreadName = " +
Thread.currentThread().getName());
System.out.println("----------");
System.out.println("speedPrintString__releaseLock time = " +
System.currentTimeMillis() + ", run ThreadName = " +
Thread.currentThread().getName());
}
}
ThreadDomain24中持有MyObject的引用:
public class ThreadDomain24
{
public void testMethod1(MyObject mo)
{
try
{
synchronized (mo)
{
System.out.println("testMethod1__getLock time = " +
System.currentTimeMillis() + ", run ThreadName = " +
Thread.currentThread().getName());
Thread.sleep(5000);
System.out.println("testMethod1__releaseLock time = " +
System.currentTimeMillis() + ", run ThreadName = " +
Thread.currentThread().getName());
}
}
catch (InterruptedException e)
{
e.printStackTrace();
}
}
}
写两个线程分别调用"speedPrintString()"方法和"testMethod1(MyObject mo)"方法:
public class MyThread24_0 extends Thread
{
private ThreadDomain24 td;
private MyObject mo; public MyThread24_0(ThreadDomain24 td, MyObject mo)
{
this.td = td;
this.mo = mo;
} public void run()
{
td.testMethod1(mo);
}
}
public class MyThread24_1 extends Thread
{
private MyObject mo; public MyThread24_1(MyObject mo)
{
this.mo = mo;
} public void run()
{
mo.speedPrintString();
}
}
写一个main函数启动这两个线程:
public static void main(String[] args)
{
ThreadDomain24 td = new ThreadDomain24();
MyObject mo = new MyObject();
MyThread24_0 mt0 = new MyThread24_0(td, mo);
MyThread24_1 mt1 = new MyThread24_1(mo);
mt0.start();
mt1.start();
}
看一下运行结果:
testMethod1__getLock time = 1443855939811, run ThreadName = Thread-0
testMethod1__releaseLock time = 1443855944812, run ThreadName = Thread-0
speedPrintString__getLock time = 1443855944812, run ThreadName = Thread-1
----------
speedPrintString__releaseLock time = 1443855944812, run ThreadName = Thread-1
看到"speedPrintString()"方法必须等待"testMethod1(MyObject mo)"方法执行完毕才可以执行,没有办法异步执行,证明了第二点的结论。第三点的验证方法类似,就不写代码证明了。