全网最详细的AbstractQueuedSynchronizer(AQS)源码剖析(二)资源的获取和释放

上期的《全网最详细的AbstractQueuedSynchronizer(AQS)源码剖析(一)AQS基础》中介绍了什么是AQS,以及AQS的基本结构。有了这些概念做铺垫之后,我们就可以正式地看看AQS是如何通过state(以下也称资源)和同步队列,实现线程之间的同步功能了
那么线程之间是如何同步呢?其实就是通过资源的获取和释放来进行同步。如果获取到就继续运行,获取不到就放入同步队列阻塞等待,释放就是交出获得的资源,并释放同步队列中需要被唤醒的线程。对,就是这么简单!
本篇我们继续深入AQS内部,一起来看看线程是怎么利用AQS来获取、释放资源的~

获取资源

AQS获取资源是通过各种acquire方法。不同acquire方法之间存在区别,如下:

  • acquire:以互斥模式获取资源,忽略中断
  • acquireInterruptibly:以互斥模式获取资源,响应中断
  • acquireShared:以共享模式获取资源,忽略中断
  • acquireSharedInterruptibly:以共享模式获取资源,响应中断

获取互斥资源

忽略中断的acquire方法

acquire方法是获取互斥资源,忽略中断。如果获取成功,直接返回,否则该线程会进入同步队列阻塞等待。源码如下:

public final void acquire(int arg) {
    if (!tryAcquire(arg) &&
        acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
        selfInterrupt();
}

acquire是一个模板方法,定义为final方法防止子类重写。其中的钩子方法tryAcquire需要子类去实现。
如果tryAcquire返回true,说明尝试获取成功,直接返回即可。如果tryAcquire返回false,说明尝试获取失败,会调用addWaiter方法进入等待队列。该方法的解析见上一篇博客《全网最详细的AbstractQueuedSynchronizer(AQS)源码剖析(一)AQS基础》。当该线程处于同步队列中(queued),就会调用acquireQueued方法

acquireQueued方法为一个已经位于同步队列的线程,以互斥模式获取资源,不响应中断但是会记录中断状态。源码如下:

final boolean acquireQueued(final Node node, int arg) {
    boolean failed = true;
    try {
        boolean interrupted = false;
        for (;;) {
            final Node p = node.predecessor();		// 获取node的前一个节点
            if (p == head && tryAcquire(arg)) {		// 如果p是head,说明node是队列头,可以竞争资源
                setHead(node);						// 将node出队
                p.next = null; // help GC
                failed = false;
                return interrupted;
            }
            if (shouldParkAfterFailedAcquire(p, node) &&
                parkAndCheckInterrupt())
                interrupted = true;
        }
    } finally {
        if (failed)
            cancelAcquire(node);
    }
}

在acquireQueued方法代码主要都包含在一个for循环中。如果发现node是队首节点,就会再次尝试获取资源。如果此时获取成功,就直接出队并返回,不用阻塞等待,这里体现了同步队列先进先出的特点
如果不是队首节点,或者是再次尝试获取资源又双叒叕失败了,则调用shouldParkAfterFailedAcquire方法判断当前线程是否应该被阻塞(在这里打一个断点)

shouldParkAfterFailedAcquire方法会检查当前线程是否应该被阻塞,如果是就返回true,否则返回false。其源码如下:

// 调用此方法必须保证pred是node的直接前驱,即node.prev == pred
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
    int ws = pred.waitStatus;
    if (ws == Node.SIGNAL)
        /*
        * This node has already set status asking a release
        * to signal it, so it can safely park.
        */
        return true;
    if (ws > 0) {
        // 如果前面的Node都被cancel了,那么就跳过这些Node
        do {
            node.prev = pred = pred.prev;
        } while (pred.waitStatus > 0);
        pred.next = node;
    } else {
        /*
        * waitStatus must be 0 or PROPAGATE.  Indicate that we
        * need a signal, but don't park yet.  Caller will need to
        * retry to make sure it cannot acquire before parking.
        */
        compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
    }
    return false;
}

只有当node的直接前驱节点状态是SIGNAL时,才会认为该线程应该被阻塞。否则还需要回到acquireQueued的for循环中重新检查,不会立即阻塞

我画了一张shouldParkAfterFailedAcquire的执行流程图,如下:

全网最详细的AbstractQueuedSynchronizer(AQS)源码剖析(二)资源的获取和释放

那么会不会有一种可能:shouldParkAfterFailedAcquire方法一直返回false,始终认为该线程不应该阻塞,那么该线程就会一直占用CPU资源,“忙等”
其实一般来说是不会的,原因见上面示意图中的紫色文字部分

再回到acquireQueued方法中,如果shouldParkAfterFailedAcquire判断该线程,并返回了true,就需要执行parkAndCheckInterrupt将该线程阻塞,源码如下:

private final boolean parkAndCheckInterrupt() {
    LockSupport.park(this);
    return Thread.interrupted();
}

在parkAndCheckInterrupt中借助了工具类LockSuppport将线程阻塞。阻塞过程中如果该线程被设置了中断状态,虽然中断不会导致阻塞立即被唤醒,但是线程的中断状态会被记录下来,并作为该方法的返回值

总体来说,acquireQueued方法的执行流程如下图所示:

全网最详细的AbstractQueuedSynchronizer(AQS)源码剖析(二)资源的获取和释放

再回到acquire方法中。如果acquire失败而阻塞等待的过程中被中断,那么等它被唤醒并成功获得资源之后,会立即调用setInterrupt方法设置线程的中断状态。setInterrupt的源码如下:

static void selfInterrupt() {
    Thread.currentThread().interrupt();
}

最后补充一点,acquire方法除了会在线程获取互斥资源时被调用,也会被条件等待方法await方法调用,具体分析见本系列最后一期博客《全网最详细的AbstractQueuedSynchronizer(AQS)源码剖析(三)条件变量》

响应中断的acquireInterruptibly方法

acquireInterruptibly用于获取互斥资源。顾名思义,这个方法响应中断,即如果在调用过程中发生了中断,会抛出中断异常,中止资源的获取。其源码如下:

public final void acquireInterruptibly(int arg) throws InterruptedException {
    if (Thread.interrupted())
        throw new InterruptedException();
    if (!tryAcquire(arg))
        doAcquireInterruptibly(arg);
}

acquireInterruptibly方法首先会检查中断状态,如果没有发生中断,才会继续向下执行,否则抛出中断异常
接下来执行钩子方法tryAcquire,如果获取成功则直接返回,否则获取失败,执行doAcquireInterruptibly方法:

private void doAcquireInterruptibly(int arg) throws InterruptedException {
    final Node node = addWaiter(Node.EXCLUSIVE);
    boolean failed = true;
    try {
        for (;;) {
            final Node p = node.predecessor();
            if (p == head && tryAcquire(arg)) {
                setHead(node);
                p.next = null; // help GC
                failed = false;
                return;
            }
            if (shouldParkAfterFailedAcquire(p, node) &&
                parkAndCheckInterrupt())
                throw new InterruptedException();
        }
    } finally {
        if (failed)
            cancelAcquire(node);
    }
}

doAcquireInterruptibly会先调用addWaiter方法,将当前线程加入队尾。之后的逻辑和acquireQueued类似,就是在for循环中,先判断当前节点是否是头节点,如果是则再次尝试获取资源。如果不是队首或者获取失败,则调用shouldParkAfterFailedAcquire方法判断该线程是否应该被阻塞。如果不是就进入下一轮循环。如果需要被阻塞,则调用parkAndCheckInterrupt方法将其阻塞。如果阻塞过程中发生中断,则当该线程被唤醒后回到doAcquireInterruptibly中,会抛出中断异常,并调用cancelAcquire执行取消节点的逻辑

doAcquireInterruptibly和acquireQueued的区别有两点:

  • acquireQueued调用之前,当前线程就已经被放入同步队列;而doAcquireInterruptibly没有,需要自己调用addWaiter方法
  • acquireQueued中不会因发生中断而抛出中断异常、取消节点,只会记录是否发生中断并返回;而doAcquireInterruptibly会响应中断,抛出中断异常,并取消该线程对应的节点
作者:酒冽        出处:https://www.cnblogs.com/frankiedyz/p/15674098.html
版权:本文版权归作者和博客园共有
转载:欢迎转载,但未经作者同意,必须保留此段声明;必须在文章中给出原文连接;否则必究法律责任

获取共享资源

忽略中断的acquireShared方法

acquireShared是以共享模式获取资源,并且忽略中断。源码如下:

public final void acquireShared(int arg) {
    if (tryAcquireShared(arg) < 0)
        doAcquireShared(arg);
}

该方法首先会调用钩子方法tryAcquireShared尝试获取共享资源,如果获取成功则直接返回,否则获取失败,调用doAcquireShared方法:

private void doAcquireShared(int arg) {
    final Node node = addWaiter(Node.SHARED);
    boolean failed = true;
    try {
        boolean interrupted = false;
        for (;;) {
            final Node p = node.predecessor();
            if (p == head) {
                int r = tryAcquireShared(arg);
                if (r >= 0) {						// 表示tryAcquireShared获取成功
                    
                    // 设置head,并判断是否需要唤醒后继线程。如果需要则唤醒,并保证传播
                    setHeadAndPropagate(node, r);
                    p.next = null; // help GC
                    if (interrupted)
                        selfInterrupt();
                    failed = false;
                    return;
                }
            }
            if (shouldParkAfterFailedAcquire(p, node) &&
                parkAndCheckInterrupt())
                interrupted = true;
        }
    } finally {
        if (failed)
            cancelAcquire(node);
    }
}

这里也会调用addWaiter将当前线程加入同步队列,不过这里的Node是共享模式(Node.SHARED)
在接下来的for循环中,如果当前线程位于队首,则再次尝试获取资源。如果获取成功,则调用setHeadAndPropagate方法,处理中断之后返回

其中setHeadAndPropagate方法的作用是弹出队头,并检测其后继节点是否需要被唤醒,如果需要的话就唤醒,并确保传播。源码如下;

private void setHeadAndPropagate(Node node, int propagate) {
    Node h = head; // Record old head for check below
    setHead(node);
    // 这个复杂的if条件判断就是用于判断:后继节点的线程是否要被唤醒
    // propagate > 0 表示允许后续节点继续获取共享资源
    if (propagate > 0 || h == null || h.waitStatus < 0 ||
        (h = head) == null || h.waitStatus < 0) {
        Node s = node.next;
        if (s == null || s.isShared())
            doReleaseShared();		// 唤醒后继的共享模式的线程,并确保状态传播下去
    }
}

在共享模式下,一个线程获取资源成功后,可能会引起后继等待获取共享资源的线程。注意,这里是后继而非同步队列中所有后面的。在这一点上,不同于互斥资源的获取,共享资源的获取更像是一人得道,鸡犬升天

如果在setHeadAndPropagate中发现后继有线程需要被释放,则调用doReleaseShared方法将它释放,并确保传播,它也是releaseShared方法的核心,该方法会在后面讲解释放共享资源时给出解析,这里暂时不分析

确保传播的含义:
保证被唤醒的线程可以继续唤醒它的后继线程。如果每个线程都能确保传播,那么所有应该被释放的后继线程都能得到释放

总的来说,acquireShared的流程与acquire基本一致,最大的区别在于:获取共享资源成功后,可能需要唤醒后继的多个线程。而获取互斥资源成功后,不需要唤醒其他任何线程

响应中断的acquireSharedInterruptibly方法

acquireSharedInterruptibly方法用于获取共享资源,但是该方法会响应中断,即在获取过程中接收到中断信号,会抛出中断异常。其源码如下:

public final void acquireSharedInterruptibly(int arg) throws InterruptedException {
    if (Thread.interrupted())
        throw new InterruptedException();
    if (tryAcquireShared(arg) < 0)
        doAcquireSharedInterruptibly(arg);
}

和acquireInterruptibly一样,acquireSharedInterruptibly也会先检查线程的中断状态是否已经被设置。如果设置则直接抛出中断异常
接下来会调用钩子方法tryAcquireShared尝试获取共享资源,获取成功则直接返回,获取失败就会调用doAcquireSharedInterruptibly方法:

private void doAcquireSharedInterruptibly(int arg) throws InterruptedException {
    final Node node = addWaiter(Node.SHARED);
    boolean failed = true;
    try {
        for (;;) {
            final Node p = node.predecessor();
            if (p == head) {
                int r = tryAcquireShared(arg);
                if (r >= 0) {
                    setHeadAndPropagate(node, r);
                    p.next = null; // help GC
                    failed = false;
                    return;
                }
            }
            if (shouldParkAfterFailedAcquire(p, node) &&
                parkAndCheckInterrupt())
                throw new InterruptedException();
        }
    } finally {
        if (failed)
            cancelAcquire(node);
    }
}

不多解释,直接上图吧!下面是doAcquireSharedInterruptibly方法的执行流程图:

全网最详细的AbstractQueuedSynchronizer(AQS)源码剖析(二)资源的获取和释放

doAcquireSharedInterruptibly方法和doAcquireShared方法大体上差不多,区别仅在于前者响应中断并会抛出中断异常,而后者忽略中断,只记录中断状态并返回

作者:酒冽        出处:https://www.cnblogs.com/frankiedyz/p/15674098.html
版权:本文版权归作者和博客园共有
转载:欢迎转载,但未经作者同意,必须保留此段声明;必须在文章中给出原文连接;否则必究法律责任

释放资源

AQS释放资源是通过各种release方法。不同release之间存在区别,如下:

  • release:以独占模式释放对象
  • releaseShared:以共享模式释放对象

release不存在响应中断的区别,都是忽略中断的,因为线程在释放资源的时候被中断可能引起意外的错误

释放互斥资源

AQS使用release方法释放互斥资源,源码如下:

public final boolean release(int arg) {
    if (tryRelease(arg)) {
        Node h = head;
        if (h != null && h.waitStatus != 0)
            unparkSuccessor(h);
        return true;
    }
    return false;
}

该方法会先调用钩子方法tryRelease,如果释放失败则直接返回false,如果释放成功,则调用unparkSuccessor方法唤醒队首线程,并返回true

unparkSuccessor方法是唤醒线程的主要逻辑。源码如下:

private void unparkSuccessor(Node node) {
    
    // 如果status < 0(表明可能需要signal),先清除状态(设为0)
    int ws = node.waitStatus;
    if (ws < 0)
        compareAndSetWaitStatus(node, ws, 0);

    // 一般来说后继需要unpark的节点就是next节点
    // 但是如果next被cancel或为null,则需要从后向前遍历,直到找到有效的后继节点
    Node s = node.next;
    if (s == null || s.waitStatus > 0) {
        s = null;
        for (Node t = tail; t != null && t != node; t = t.prev)
            if (t.waitStatus <= 0)
                s = t;
    }
    if (s != null)
        LockSupport.unpark(s.thread);
}

该方法的作用是唤醒node的有效后继节点。有效指的是跳过那些被cancel的节点。 由于同步队列是FIFO的,所以node一定是head

作者:酒冽        出处:https://www.cnblogs.com/frankiedyz/p/15674098.html
版权:本文版权归作者和博客园共有
转载:欢迎转载,但未经作者同意,必须保留此段声明;必须在文章中给出原文连接;否则必究法律责任

释放共享资源

releaseShared用于释放共享资源,源码如下:

public final boolean releaseShared(int arg) {
    if (tryReleaseShared(arg)) {
        doReleaseShared();
        return true;
    }
    return false;
}

该方法首先调用钩子方法tryReleaseShared尝试释放资源,如果失败则直接返回false,如果成功则执行doReleaseShared方法唤醒后继的其他共享模式线程同时确保传播,最后返回true

doReleaseShared方法在前面的acquireShared -> setHeadAndPropagate中出现过,该方法的作用是在共享模式下唤醒后继线程,并确保传播。其源码如下:

private void doReleaseShared() {
    for (;;) {
        Node h = head;
        if (h != null && h != tail) {
            int ws = h.waitStatus;
            if (ws == Node.SIGNAL) {
                // 如果需要,则唤醒后继线程,同时设置waitStatus为0
                if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
                    continue;            // loop to recheck cases
                unparkSuccessor(h);			// 唤醒后继线程
            }
            else if (ws == 0 && !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))		// 设置PROPAGATE状态,保证唤醒可以传播下去
                continue;                // loop on failed CAS
        }
        // 如果上述的执行过程没有被别的线程打扰,那就退出,否则重新loop
        if (h == head)                   // loop if head changed
            break;
    }
}

最后来做个总结:

AQS针对互斥资源、共享资源的获取和释放,提供了不同的方法。而获取资源的方法也可以分为响应中断和忽略中断,释放资源都是忽略中断的

AQS正是通过资源 (state)的释放和获取,配合同步队列让线程排队等待,以FIFO的方式让竞争资源失败的线程阻塞、唤醒

这些释放、获取方法都是AQS提供给子类去调用的模板方法,其中的一些关键步骤均设计为了钩子方法,让子类可以个性化定制

正是有了AQS这个强大的后盾,才能诞生出那么多实用的并发同步工具类。不得不说,AQS是真的牛啊

好了,能看到这里的读者,相信已经掌握了AQS的基本结构,以及AQS是获取、释放资源的原理
我这里其实并没有剖析所有AQS提供的资源获取方法,还有两个可超时方法tryAcquireNanos、tryAcquireSharedNanos没有讲解,但是基本上和其他获取资源方法是类似的,只是多了一个超时而取消的逻辑,感兴趣的读者可以打开AQS源码自己分析
接下来的就是AQS的最后一篇了,我们来看看AQS里面的条件队列是怎么实现的

上一篇:全网最详细的AbstractQueuedSynchronizer(AQS)源码剖析(三)条件变量


下一篇:AQS之详解