第二章
2 数据重构
2.1 数据的合并
2.1.1 将data文件夹里面的所有数据都载入,观察数据的之间的关系
# 导入基本库
import numpy as np
import pandas as pd
# 载入data文件中的:train-left-up.csv
df1=pd.read_csv('./data/train-left-up.csv')
df1.head()
|
PassengerId |
Survived |
Pclass |
Name |
0 |
1 |
0 |
3 |
Braund, Mr. Owen Harris |
1 |
2 |
1 |
1 |
Cumings, Mrs. John Bradley (Florence Briggs Th... |
2 |
3 |
1 |
3 |
Heikkinen, Miss. Laina |
3 |
4 |
1 |
1 |
Futrelle, Mrs. Jacques Heath (Lily May Peel) |
4 |
5 |
0 |
3 |
Allen, Mr. William Henry |
df2=pd.read_csv('./data/train-left-down.csv')
df2.head()
|
PassengerId |
Survived |
Pclass |
Name |
0 |
440 |
0 |
2 |
Kvillner, Mr. Johan Henrik Johannesson |
1 |
441 |
1 |
2 |
Hart, Mrs. Benjamin (Esther Ada Bloomfield) |
2 |
442 |
0 |
3 |
Hampe, Mr. Leon |
3 |
443 |
0 |
3 |
Petterson, Mr. Johan Emil |
4 |
444 |
1 |
2 |
Reynaldo, Ms. Encarnacion |
df3=pd.read_csv('./data/train-right-up.csv')
df3.head()
|
Sex |
Age |
SibSp |
Parch |
Ticket |
Fare |
Cabin |
Embarked |
0 |
male |
22.0 |
1 |
0 |
A/5 21171 |
7.2500 |
NaN |
S |
1 |
female |
38.0 |
1 |
0 |
PC 17599 |
71.2833 |
C85 |
C |
2 |
female |
26.0 |
0 |
0 |
STON/O2. 3101282 |
7.9250 |
NaN |
S |
3 |
female |
35.0 |
1 |
0 |
113803 |
53.1000 |
C123 |
S |
4 |
male |
35.0 |
0 |
0 |
373450 |
8.0500 |
NaN |
S |
df4=pd.read_csv('./data/train-right-down.csv')
df4.head()
|
Sex |
Age |
SibSp |
Parch |
Ticket |
Fare |
Cabin |
Embarked |
0 |
male |
31.0 |
0 |
0 |
C.A. 18723 |
10.500 |
NaN |
S |
1 |
female |
45.0 |
1 |
1 |
F.C.C. 13529 |
26.250 |
NaN |
S |
2 |
male |
20.0 |
0 |
0 |
345769 |
9.500 |
NaN |
S |
3 |
male |
25.0 |
1 |
0 |
347076 |
7.775 |
NaN |
S |
4 |
female |
28.0 |
0 |
0 |
230434 |
13.000 |
NaN |
S |
2.1.2 使用concat方法:将数据train-left-up.csv和train-right-up.csv横向合并为一张表,并保存这张表为result_up
result_up=pd.concat([df1,df3],axis=1)
result_up.head()
|
PassengerId |
Survived |
Pclass |
Name |
Sex |
Age |
SibSp |
Parch |
Ticket |
Fare |
Cabin |
Embarked |
0 |
1 |
0 |
3 |
Braund, Mr. Owen Harris |
male |
22.0 |
1 |
0 |
A/5 21171 |
7.2500 |
NaN |
S |
1 |
2 |
1 |
1 |
Cumings, Mrs. John Bradley (Florence Briggs Th... |
female |
38.0 |
1 |
0 |
PC 17599 |
71.2833 |
C85 |
C |
2 |
3 |
1 |
3 |
Heikkinen, Miss. Laina |
female |
26.0 |
0 |
0 |
STON/O2. 3101282 |
7.9250 |
NaN |
S |
3 |
4 |
1 |
1 |
Futrelle, Mrs. Jacques Heath (Lily May Peel) |
female |
35.0 |
1 |
0 |
113803 |
53.1000 |
C123 |
S |
4 |
5 |
0 |
3 |
Allen, Mr. William Henry |
male |
35.0 |
0 |
0 |
373450 |
8.0500 |
NaN |
S |
2.1.3 使用concat方法:将train-left-down和train-right-down横向合并为一张表,并保存这张表为result_down。然后将上边的result_up和result_down纵向合并为result。
result_down=pd.concat([df2,df4],axis=1)
result_down.head()
|
PassengerId |
Survived |
Pclass |
Name |
Sex |
Age |
SibSp |
Parch |
Ticket |
Fare |
Cabin |
Embarked |
0 |
440 |
0 |
2 |
Kvillner, Mr. Johan Henrik Johannesson |
male |
31.0 |
0 |
0 |
C.A. 18723 |
10.500 |
NaN |
S |
1 |
441 |
1 |
2 |
Hart, Mrs. Benjamin (Esther Ada Bloomfield) |
female |
45.0 |
1 |
1 |
F.C.C. 13529 |
26.250 |
NaN |
S |
2 |
442 |
0 |
3 |
Hampe, Mr. Leon |
male |
20.0 |
0 |
0 |
345769 |
9.500 |
NaN |
S |
3 |
443 |
0 |
3 |
Petterson, Mr. Johan Emil |
male |
25.0 |
1 |
0 |
347076 |
7.775 |
NaN |
S |
4 |
444 |
1 |
2 |
Reynaldo, Ms. Encarnacion |
female |
28.0 |
0 |
0 |
230434 |
13.000 |
NaN |
S |
result=pd.concat([result_up,result_down],axis=0)
result.head()
|
PassengerId |
Survived |
Pclass |
Name |
Sex |
Age |
SibSp |
Parch |
Ticket |
Fare |
Cabin |
Embarked |
0 |
1 |
0 |
3 |
Braund, Mr. Owen Harris |
male |
22.0 |
1 |
0 |
A/5 21171 |
7.2500 |
NaN |
S |
1 |
2 |
1 |
1 |
Cumings, Mrs. John Bradley (Florence Briggs Th... |
female |
38.0 |
1 |
0 |
PC 17599 |
71.2833 |
C85 |
C |
2 |
3 |
1 |
3 |
Heikkinen, Miss. Laina |
female |
26.0 |
0 |
0 |
STON/O2. 3101282 |
7.9250 |
NaN |
S |
3 |
4 |
1 |
1 |
Futrelle, Mrs. Jacques Heath (Lily May Peel) |
female |
35.0 |
1 |
0 |
113803 |
53.1000 |
C123 |
S |
4 |
5 |
0 |
3 |
Allen, Mr. William Henry |
male |
35.0 |
0 |
0 |
373450 |
8.0500 |
NaN |
S |
2.1.4 使用DataFrame自带的方法join方法和append:实现2.1.2和2.1.3
result_up=df1.join(df3)
result_up.head()
|
PassengerId |
Survived |
Pclass |
Name |
Sex |
Age |
SibSp |
Parch |
Ticket |
Fare |
Cabin |
Embarked |
0 |
1 |
0 |
3 |
Braund, Mr. Owen Harris |
male |
22.0 |
1 |
0 |
A/5 21171 |
7.2500 |
NaN |
S |
1 |
2 |
1 |
1 |
Cumings, Mrs. John Bradley (Florence Briggs Th... |
female |
38.0 |
1 |
0 |
PC 17599 |
71.2833 |
C85 |
C |
2 |
3 |
1 |
3 |
Heikkinen, Miss. Laina |
female |
26.0 |
0 |
0 |
STON/O2. 3101282 |
7.9250 |
NaN |
S |
3 |
4 |
1 |
1 |
Futrelle, Mrs. Jacques Heath (Lily May Peel) |
female |
35.0 |
1 |
0 |
113803 |
53.1000 |
C123 |
S |
4 |
5 |
0 |
3 |
Allen, Mr. William Henry |
male |
35.0 |
0 |
0 |
373450 |
8.0500 |
NaN |
S |
result_down=df2.join(df4)
result_down.head()
|
PassengerId |
Survived |
Pclass |
Name |
Sex |
Age |
SibSp |
Parch |
Ticket |
Fare |
Cabin |
Embarked |
0 |
440 |
0 |
2 |
Kvillner, Mr. Johan Henrik Johannesson |
male |
31.0 |
0 |
0 |
C.A. 18723 |
10.500 |
NaN |
S |
1 |
441 |
1 |
2 |
Hart, Mrs. Benjamin (Esther Ada Bloomfield) |
female |
45.0 |
1 |
1 |
F.C.C. 13529 |
26.250 |
NaN |
S |
2 |
442 |
0 |
3 |
Hampe, Mr. Leon |
male |
20.0 |
0 |
0 |
345769 |
9.500 |
NaN |
S |
3 |
443 |
0 |
3 |
Petterson, Mr. Johan Emil |
male |
25.0 |
1 |
0 |
347076 |
7.775 |
NaN |
S |
4 |
444 |
1 |
2 |
Reynaldo, Ms. Encarnacion |
female |
28.0 |
0 |
0 |
230434 |
13.000 |
NaN |
S |
result=result_up.append(result_down)
result.head()
|
PassengerId |
Survived |
Pclass |
Name |
Sex |
Age |
SibSp |
Parch |
Ticket |
Fare |
Cabin |
Embarked |
0 |
1 |
0 |
3 |
Braund, Mr. Owen Harris |
male |
22.0 |
1 |
0 |
A/5 21171 |
7.2500 |
NaN |
S |
1 |
2 |
1 |
1 |
Cumings, Mrs. John Bradley (Florence Briggs Th... |
female |
38.0 |
1 |
0 |
PC 17599 |
71.2833 |
C85 |
C |
2 |
3 |
1 |
3 |
Heikkinen, Miss. Laina |
female |
26.0 |
0 |
0 |
STON/O2. 3101282 |
7.9250 |
NaN |
S |
3 |
4 |
1 |
1 |
Futrelle, Mrs. Jacques Heath (Lily May Peel) |
female |
35.0 |
1 |
0 |
113803 |
53.1000 |
C123 |
S |
4 |
5 |
0 |
3 |
Allen, Mr. William Henry |
male |
35.0 |
0 |
0 |
373450 |
8.0500 |
NaN |
S |
2.1.5 使用Panads的merge方法和DataFrame的append方法:实现2.1.2和2.1.3
参数补充
how:指的是连接方式有inner(内连接),left(左外连接),right(右外连接),outer(全外连接);默认为inner!
left_index:使用左则DataFrame中的行索引做为连接键
right_index:使用右则DataFrame中的行索引做为连接键
suffixes:字符串值组成的元组,用于指定当左右DataFrame存在相同列名时在列名后面附加的后缀名称,默认为(’_x’,’_y’)
result_up=pd.merge(df1,df3,left_index=True,right_index=True)
result_up.head()
|
PassengerId |
Survived |
Pclass |
Name |
Sex |
Age |
SibSp |
Parch |
Ticket |
Fare |
Cabin |
Embarked |
0 |
1 |
0 |
3 |
Braund, Mr. Owen Harris |
male |
22.0 |
1 |
0 |
A/5 21171 |
7.2500 |
NaN |
S |
1 |
2 |
1 |
1 |
Cumings, Mrs. John Bradley (Florence Briggs Th... |
female |
38.0 |
1 |
0 |
PC 17599 |
71.2833 |
C85 |
C |
2 |
3 |
1 |
3 |
Heikkinen, Miss. Laina |
female |
26.0 |
0 |
0 |
STON/O2. 3101282 |
7.9250 |
NaN |
S |
3 |
4 |
1 |
1 |
Futrelle, Mrs. Jacques Heath (Lily May Peel) |
female |
35.0 |
1 |
0 |
113803 |
53.1000 |
C123 |
S |
4 |
5 |
0 |
3 |
Allen, Mr. William Henry |
male |
35.0 |
0 |
0 |
373450 |
8.0500 |
NaN |
S |
result_down=pd.merge(df2,df4,left_index=True,right_index=True)
result_down.head()
|
PassengerId |
Survived |
Pclass |
Name |
Sex |
Age |
SibSp |
Parch |
Ticket |
Fare |
Cabin |
Embarked |
0 |
440 |
0 |
2 |
Kvillner, Mr. Johan Henrik Johannesson |
male |
31.0 |
0 |
0 |
C.A. 18723 |
10.500 |
NaN |
S |
1 |
441 |
1 |
2 |
Hart, Mrs. Benjamin (Esther Ada Bloomfield) |
female |
45.0 |
1 |
1 |
F.C.C. 13529 |
26.250 |
NaN |
S |
2 |
442 |
0 |
3 |
Hampe, Mr. Leon |
male |
20.0 |
0 |
0 |
345769 |
9.500 |
NaN |
S |
3 |
443 |
0 |
3 |
Petterson, Mr. Johan Emil |
male |
25.0 |
1 |
0 |
347076 |
7.775 |
NaN |
S |
4 |
444 |
1 |
2 |
Reynaldo, Ms. Encarnacion |
female |
28.0 |
0 |
0 |
230434 |
13.000 |
NaN |
S |
result=result_up.append(result_down)
result.head()
|
PassengerId |
Survived |
Pclass |
Name |
Sex |
Age |
SibSp |
Parch |
Ticket |
Fare |
Cabin |
Embarked |
0 |
1 |
0 |
3 |
Braund, Mr. Owen Harris |
male |
22.0 |
1 |
0 |
A/5 21171 |
7.2500 |
NaN |
S |
1 |
2 |
1 |
1 |
Cumings, Mrs. John Bradley (Florence Briggs Th... |
female |
38.0 |
1 |
0 |
PC 17599 |
71.2833 |
C85 |
C |
2 |
3 |
1 |
3 |
Heikkinen, Miss. Laina |
female |
26.0 |
0 |
0 |
STON/O2. 3101282 |
7.9250 |
NaN |
S |
3 |
4 |
1 |
1 |
Futrelle, Mrs. Jacques Heath (Lily May Peel) |
female |
35.0 |
1 |
0 |
113803 |
53.1000 |
C123 |
S |
4 |
5 |
0 |
3 |
Allen, Mr. William Henry |
male |
35.0 |
0 |
0 |
373450 |
8.0500 |
NaN |
S |
【思考】对比merge、join以及concat的方法的不同以及相同。思考一下在2.1.4和2.15的情况下,为什么都要求使用DataFrame的append方法,如何只要求使用merge或者join可不可以完成2.1.4和2.15呢?
#用merge完成2.1.4
result=pd.merge(result_up,result_down,how='left')
result.head()
|
PassengerId |
Survived |
Pclass |
Name |
Sex |
Age |
SibSp |
Parch |
Ticket |
Fare |
Cabin |
Embarked |
0 |
1 |
0 |
3 |
Braund, Mr. Owen Harris |
male |
22.0 |
1 |
0 |
A/5 21171 |
7.2500 |
NaN |
S |
1 |
2 |
1 |
1 |
Cumings, Mrs. John Bradley (Florence Briggs Th... |
female |
38.0 |
1 |
0 |
PC 17599 |
71.2833 |
C85 |
C |
2 |
3 |
1 |
3 |
Heikkinen, Miss. Laina |
female |
26.0 |
0 |
0 |
STON/O2. 3101282 |
7.9250 |
NaN |
S |
3 |
4 |
1 |
1 |
Futrelle, Mrs. Jacques Heath (Lily May Peel) |
female |
35.0 |
1 |
0 |
113803 |
53.1000 |
C123 |
S |
4 |
5 |
0 |
3 |
Allen, Mr. William Henry |
male |
35.0 |
0 |
0 |
373450 |
8.0500 |
NaN |
S |
#用join完成2.1.4
#上面提过列名相同需要修改
result=result_up.join(result_down,rsuffix='_2')
result.head()
|
PassengerId |
Survived |
Pclass |
Name |
Sex |
Age |
SibSp |
Parch |
Ticket |
Fare |
... |
Pclass_2 |
Name_2 |
Sex_2 |
Age_2 |
SibSp_2 |
Parch_2 |
Ticket_2 |
Fare_2 |
Cabin_2 |
Embarked_2 |
0 |
1 |
0 |
3 |
Braund, Mr. Owen Harris |
male |
22.0 |
1 |
0 |
A/5 21171 |
7.2500 |
... |
2 |
Kvillner, Mr. Johan Henrik Johannesson |
male |
31.0 |
0 |
0 |
C.A. 18723 |
10.500 |
NaN |
S |
1 |
2 |
1 |
1 |
Cumings, Mrs. John Bradley (Florence Briggs Th... |
female |
38.0 |
1 |
0 |
PC 17599 |
71.2833 |
... |
2 |
Hart, Mrs. Benjamin (Esther Ada Bloomfield) |
female |
45.0 |
1 |
1 |
F.C.C. 13529 |
26.250 |
NaN |
S |
2 |
3 |
1 |
3 |
Heikkinen, Miss. Laina |
female |
26.0 |
0 |
0 |
STON/O2. 3101282 |
7.9250 |
... |
3 |
Hampe, Mr. Leon |
male |
20.0 |
0 |
0 |
345769 |
9.500 |
NaN |
S |
3 |
4 |
1 |
1 |
Futrelle, Mrs. Jacques Heath (Lily May Peel) |
female |
35.0 |
1 |
0 |
113803 |
53.1000 |
... |
3 |
Petterson, Mr. Johan Emil |
male |
25.0 |
1 |
0 |
347076 |
7.775 |
NaN |
S |
4 |
5 |
0 |
3 |
Allen, Mr. William Henry |
male |
35.0 |
0 |
0 |
373450 |
8.0500 |
... |
2 |
Reynaldo, Ms. Encarnacion |
female |
28.0 |
0 |
0 |
230434 |
13.000 |
NaN |
S |
5 rows × 24 columns
思考回答:
merge默认以重叠的列名为连接键,上面d1和d3是完全两个不同的表,所以在连接的时候就要指定left_index和right_index。
join当两个表中列名不同时,不加任何参数就可以直接用,有重名列时要通过参数lsuffix, rsuffix。
concat基于轴向连接,关键参数为axis。
append可以很方便连接两个相同列名的dataframe且不用加参数。
2.1.6 完成的数据保存为result.csv
result.to_csv('result.csv')
2.2 换一种角度看数据
2.2.1 将我们的数据变为Series类型的数据
df = pd.read_csv('result.csv')
df.head()
|
Unnamed: 0 |
PassengerId |
Survived |
Pclass |
Name |
Sex |
Age |
SibSp |
Parch |
Ticket |
... |
Pclass_2 |
Name_2 |
Sex_2 |
Age_2 |
SibSp_2 |
Parch_2 |
Ticket_2 |
Fare_2 |
Cabin_2 |
Embarked_2 |
0 |
0 |
1 |
0 |
3 |
Braund, Mr. Owen Harris |
male |
22.0 |
1 |
0 |
A/5 21171 |
... |
2 |
Kvillner, Mr. Johan Henrik Johannesson |
male |
31.0 |
0 |
0 |
C.A. 18723 |
10.500 |
NaN |
S |
1 |
1 |
2 |
1 |
1 |
Cumings, Mrs. John Bradley (Florence Briggs Th... |
female |
38.0 |
1 |
0 |
PC 17599 |
... |
2 |
Hart, Mrs. Benjamin (Esther Ada Bloomfield) |
female |
45.0 |
1 |
1 |
F.C.C. 13529 |
26.250 |
NaN |
S |
2 |
2 |
3 |
1 |
3 |
Heikkinen, Miss. Laina |
female |
26.0 |
0 |
0 |
STON/O2. 3101282 |
... |
3 |
Hampe, Mr. Leon |
male |
20.0 |
0 |
0 |
345769 |
9.500 |
NaN |
S |
3 |
3 |
4 |
1 |
1 |
Futrelle, Mrs. Jacques Heath (Lily May Peel) |
female |
35.0 |
1 |
0 |
113803 |
... |
3 |
Petterson, Mr. Johan Emil |
male |
25.0 |
1 |
0 |
347076 |
7.775 |
NaN |
S |
4 |
4 |
5 |
0 |
3 |
Allen, Mr. William Henry |
male |
35.0 |
0 |
0 |
373450 |
... |
2 |
Reynaldo, Ms. Encarnacion |
female |
28.0 |
0 |
0 |
230434 |
13.000 |
NaN |
S |
5 rows × 25 columns
out=df.stack()
out.head()
0 Unnamed: 0 0
PassengerId 1
Survived 0
Pclass 3
Name Braund, Mr. Owen Harris
dtype: object
out.to_csv('unit_result.csv')
test=pd.read_csv('unit_result.csv')
test.head()
|
Unnamed: 0 |
Unnamed: 1 |
0 |
0 |
0 |
Unnamed: 0 |
0 |
1 |
0 |
PassengerId |
1 |
2 |
0 |
Survived |
0 |
3 |
0 |
Pclass |
3 |
4 |
0 |
Name |
Braund, Mr. Owen Harris |
# 导入基本库
import numpy as np
import pandas as pd
# 载入上一个任务人保存的文件中:result.csv,并查看这个文件
df=pd.read_csv('result.csv')
df.head()
|
Unnamed: 0 |
PassengerId |
Survived |
Pclass |
Name |
Sex |
Age |
SibSp |
Parch |
Ticket |
Fare |
Cabin |
Embarked |
0 |
0 |
1 |
0 |
3 |
Braund, Mr. Owen Harris |
male |
22.0 |
1 |
0 |
A/5 21171 |
7.2500 |
NaN |
S |
1 |
1 |
2 |
1 |
1 |
Cumings, Mrs. John Bradley (Florence Briggs Th... |
female |
38.0 |
1 |
0 |
PC 17599 |
71.2833 |
C85 |
C |
2 |
2 |
3 |
1 |
3 |
Heikkinen, Miss. Laina |
female |
26.0 |
0 |
0 |
STON/O2. 3101282 |
7.9250 |
NaN |
S |
3 |
3 |
4 |
1 |
1 |
Futrelle, Mrs. Jacques Heath (Lily May Peel) |
female |
35.0 |
1 |
0 |
113803 |
53.1000 |
C123 |
S |
4 |
4 |
5 |
0 |
3 |
Allen, Mr. William Henry |
male |
35.0 |
0 |
0 |
373450 |
8.0500 |
NaN |
S |
2.3 数据聚合与运算
2.3.1 通过教材《Python for Data Analysis》P303、Google or anything来学习了解GroupBy机制
按照分组键进行分组,再按照某列进行应用,产生一个新Series
2.3.2 计算泰坦尼克号男性与女性的平均票价
df1=df['Fare'].groupby(df['Sex'])
means=df1.mean()
means
Sex
female 44.479818
male 25.523893
Name: Fare, dtype: float64
2.3.3 统计泰坦尼克号中男女的存活人数
# 存活的记为1,死亡记为0,存活的通过sum相加
df2=df['Survived'].groupby(df['Sex'])
sums=df2.sum()
sums
Sex
female 233
male 109
Name: Survived, dtype: int64
2.3.4 计算客舱不同等级的存活人数
df3=df['Survived'].groupby(df['Pclass'])
sums=df3.sum()
sums
Pclass
1 136
2 87
3 119
Name: Survived, dtype: int64
【思考】从数据分析的角度,上面的统计结果可以得出那些结论
思考心得 :
女性的平均票价比男性的贵,一定概率说明女性更多的购买了高等级客舱票,而且女性的存活人数是男性的两倍,也可以看出越高等级客舱存活率越高
【思考】从任务二到任务三中,这些运算可以通过agg()函数来同时计算。并且可以使用rename函数修改列名。你可以按照提示写出这个过程吗?
#思考心得
df.groupby('Sex').agg({'Fare': 'mean', 'Survived': 'sum'}).rename(columns=
{'Fare': 'mean_fare', 'Survived': 'sum_pclass'})
|
|
|
Sex |
mean_fare |
sum_pclass |
female |
44.479818 |
233 |
male |
25.523893 |
109 |
2.3.5 统计在不同等级的票中的不同年龄的船票花费的平均值
df.groupby(['Pclass','Age'])['Fare'].mean().head()
Pclass Age
1 0.92 151.5500
2.00 151.5500
4.00 81.8583
11.00 120.0000
14.00 120.0000
Name: Fare, dtype: float64
2.3.6 将2.3.2和2.3.3的数据合并,并保存到sex_fare_survived.csv
df=pd.merge(means,sums,left_index=True,right_index=True)
df.head()
|
Fare |
Survived |
Sex |
|
|
female |
44.479818 |
233 |
male |
25.523893 |
109 |
df.to_csv('sex_fare_survived.csv')
2.3.7 得出不同年龄的总的存活人数,然后找出存活人数的最高的年龄,最后计算存活人数最高的存活率(存活人数/总人数)
a=df['Survived'].groupby(df['Age'])
b=a.sum()
b.head()
Age
0.42 1
0.67 1
0.75 2
0.83 2
0.92 1
Name: Survived, dtype: int64
b[b.values==b.max()]
Age
24.0 15
Name: Survived, dtype: int64
sums=df['Survived'].sum()
sums
342
survival_rate=b.max()/sums
survival_rate
0.043859649122807015