ONNX-开放式神经网络交换格式

以下内容根据个人理解整理而成,如有错误,欢迎指出,不胜感激。

1. ONNX简介

ONNX是一种针对机器学习所设计的开放式的文件格式,用于存储训练好的模型。它使得不同的人工智能框架(如Pytorch, MXNet)可以采用相同格式存储模型数据并交互。 ONNX的规范及代码主要由微软,亚马逊 ,Facebook 和 IBM 等公司共同开发,以开放源代码的方式托管在Github上。目前官方支持加载ONNX模型并进行推理的深度学习框架有: Caffe2, PyTorch, MXNet,ML.NET,TensorRT 和 Microsoft CNTK,并且 TensorFlow 也非官方的支持ONNX。---*

ONNX全称是Open Neural Network Exchange,不同深度学习框架可以将模型保存为ONNX格式,从而实现模型在不同框架之间的转换。

2. ONNX使用

我们可以使用pip或在conda环境中使用conda来获取ONNX,具体参见ONNX的github

ONNX是一个开放式规范,由以下组件组成:

  • 可扩展计算图模型
  • 一系列内置运算单元(OP)
  • 标准数据类型

ONNX中,每一个计算流图都定义为由节点组成的列表,每个节点是一个OP,可能有一个或多个输入与输出,并由这些节点构建有向无环图。

目前,ONNX已支持当前主要的各种深度学习框架,有些框架如PyTorch是官方集成了ONNX,有些需要第三方支持,即便像darknet这种小众的框架,也可以手动构建ONNX图来将模型转为ONNX格式。

Reference

开源一年多的模型交换格式ONNX,已经一统框架江湖了?
ONNX github

上一篇:PyTorch 1.0 中文文档:torch.onnx


下一篇:微软开源用于AI模型的推理引擎ONNX Runtime