pytorch深度学习:反向传播y=w*x

数据 x_data = [1.0, 2.0, 3.0],y_data = [2.0, 4.0, 6.0]
模型选择:y = w * x
代码如下:

import torch

x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]

w = torch.Tensor([1.0])
w.requires_grad = True

def forward(x):
    return x * w

def loss(x, y):
    y_pred = forward(x)
    return (y_pred - y) ** 2

print("predict (before training)", 4, forward(4).item())

for epoch in range(100):
    for x, y in zip(x_data, y_data):
        l = loss(x, y)
        l.backward()
        print('\tgrad: ', x, y, w.grad.item())
        w.data = w.data - 0.01 * w.grad.data

        w.grad.data.zero_()

    print("progress:", epoch, l.item())

print("predict (after training)", 4, forward(4).item())

打印结果示例如下:
pytorch深度学习:反向传播y=w*x

上一篇:C++ move和forward


下一篇:【转载】转移和完美转发