前言:
前面是Avl树的介绍写的比较详细,这一篇主要写怎么实现
最简单的旋转
依次插入1 2 3节点,1的左子树为空高度为0,而右子树高度为2,旋转后,左右高度都为1
单旋转
依次插入6 3 7 1 4,插入2时,树的平衡被破坏
步骤:
获取k1节点=k2的左边节点
设置k2的左边节点为k1的右边节点Y
设置k1的右边节点为k2
重新计算k2和k1的高度
private AvlNode<T> rotateWithLeftChild(AvlNode<T> k2) {
AvlNode k1 = k2.left;
k2.left = k1.right;
k1.right = k2;
k2.height = Math.max(height(k2.left), height(k2.right)) + 1;
k1.height = Math.max(height(k1.left), k2.height) + 1;
return k1;
}
双旋转
依次插入6 2 7 1 4,插入3时,树的平衡被破坏
下面的图解C节点实际上应该没有,因为插入B的时候已经影响平衡
步骤:
k3的左边子树进行一次右边的单旋转
k3进行一次左边的单旋转
private AvlNode<T> doubleWithLeftChild(AvlNode<T> k3) {
k3.left = rotateWithRightChild(k3.left);
return rotateWithLeftChild(k3);
}
实现
平衡二叉树实现的大部分过程和二叉查找树是一样的,区别就在于插入和删除之后要判断树左右子树高度之差是否大于1,如果大于1需要进行旋转维持平衡
其它的两种插入影响平衡的情况和以上两种刚好相反
代码
树节点
package 二叉树;
public class AvlNode<T> {
T element;
int height;
AvlNode<T> left;
AvlNode<T> right;
public AvlNode(T element) {
this(element, null, null);
}
public AvlNode(T element, AvlNode<T> left, AvlNode<T> right) {
this.element = element;
this.left = left;
this.right = right;
this.height = 0;
}
}
平衡代码
private AvlNode<T> balance(AvlNode<T> t) {
if (t == null) {
return t;
}
if (height(t.left) - height(t.right) > ALLOWED_IMBALANCE) {
if (height(t.left.left) >= height(t.left.right)) {
t = rotateWithLeftChild(t);
} else {
t = doubleWithLeftChild(t);
}
} else if (height(t.right) - height(t.left) > ALLOWED_IMBALANCE) {
if (height(t.right.right) >= height(t.right.left)) {
t = rotateWithRightChild(t);
} else {
t = doubleWithRightChild(t);
}
}
t.height = Math.max(height(t.left), height(t.right)) + 1;
return t;
}
完整代码
package 二叉树;
/**
*
* @author 皖
*
* @param <T>
*/
public class AvlTree<T extends Comparable<? super T>> {
private AvlNode<T> root;
public void insert(T x) {
root = insert(x, root);
}
public void remove(T x) {
root = remove(x, root);
}
public T findMin() {
return findMin(root).element;
}
public void makeEmpty() {
root = null;
}
public boolean isEmpty() {
return root == null;
}
/**
* 添加节点
*
* @param x 插入节点
* @param t 父节点
*/
private AvlNode<T> insert(T x, AvlNode<T> t) {
//如果根节点为空,则当前x节点为根及诶单
if (null == t) {
return new AvlNode(x);
}
int compareResult = x.compareTo(t.element);
//小于当前根节点 将x插入根节点的左边
if (compareResult < 0) {
t.left = insert(x, t.left);
} else if (compareResult > 0) {
//大于当前根节点 将x插入根节点的右边
t.right = insert(x, t.right);
} else {
}
return balance(t);
}
private static final int ALLOWED_IMBALANCE = 1;
private AvlNode<T> balance(AvlNode<T> t) {
if (t == null) {
return t;
}
if (height(t.left) - height(t.right) > ALLOWED_IMBALANCE) {
if (height(t.left.left) >= height(t.left.right)) {
t = rotateWithLeftChild(t);
} else {
t = doubleWithLeftChild(t);
}
} else if (height(t.right) - height(t.left) > ALLOWED_IMBALANCE) {
if (height(t.right.right) >= height(t.right.left)) {
t = rotateWithRightChild(t);
} else {
t = doubleWithRightChild(t);
}
}
t.height = Math.max(height(t.left), height(t.right)) + 1;
return t;
}
private AvlNode<T> doubleWithRightChild(AvlNode<T> k3) {
k3.right = rotateWithLeftChild(k3.right);
return rotateWithRightChild(k3);
}
private AvlNode<T> rotateWithRightChild(AvlNode<T> k2) {
AvlNode k1 = k2.right;
k2.right = k1.left;
k1.left = k2;
k2.height = Math.max(height(k2.right), height(k2.left)) + 1;
k1.height = Math.max(height(k1.right), k2.height) + 1;
return k1;
}
private AvlNode<T> doubleWithLeftChild(AvlNode<T> k3) {
k3.left = rotateWithRightChild(k3.left);
return rotateWithLeftChild(k3);
}
private AvlNode<T> rotateWithLeftChild(AvlNode<T> k2) {
AvlNode k1 = k2.left;
k2.left = k1.right;
k1.right = k2;
k2.height = Math.max(height(k2.left), height(k2.right)) + 1;
k1.height = Math.max(height(k1.left), k2.height) + 1;
return k1;
}
private int height(AvlNode<T> t) {
return t == null ? -1 : t.height;
}
/**
* 删除节点
*
* @param x 节点
* @param t 父节点
*/
private AvlNode<T> remove(T x, AvlNode<T> t) {
if (null == t) {
return t;
}
int compareResult = x.compareTo(t.element);
//小于当前根节点
if (compareResult < 0) {
t.left = remove(x, t.left);
} else if (compareResult > 0) {
//大于当前根节点
t.right = remove(x, t.right);
} else if (t.left != null && t.right != null) {
//找到右边最小的节点
t.element = findMin(t.right).element;
//当前节点的右边等于原节点右边删除已经被选为的替代节点
t.right = remove(t.element, t.right);
} else {
t = (t.left != null) ? t.left : t.right;
}
return balance(t);
}
/**
* 找最小节点
*
* @param root 根节点
*/
private AvlNode<T> findMin(AvlNode<T> root) {
if (root == null) {
return null;
} else if (root.left == null) {
return root;
}
return findMin(root.left);
}
/**
* 找最大节点
*
* @param root 根节点
*/
private AvlNode<T> findMax(AvlNode<T> root) {
if (root == null) {
return null;
} else if (root.right == null) {
return root;
} else {
return findMax(root.right);
}
}
public void printTree() {
if (isEmpty()) {
System.out.println("节点为空");
} else {
printTree(root);
}
}
public void printTree(AvlNode<T> root) {
if (root != null) {
System.out.print(root.element);
if (null != root.left) {
System.out.print("左边节点" + root.left.element);
}
if (null != root.right) {
System.out.print("右边节点" + root.right.element);
}
System.out.println();
printTree(root.left);
printTree(root.right);
}
}
}
测试
package 二叉树;
public class Test{
public static void main (String[] args) {
AvlTree testTree = new AvlTree();
testTree.insert(36);
testTree.insert(22);
testTree.insert(16);
testTree.insert(45);
testTree.insert(28);
testTree.insert(60);
testTree.printTree();
}
}
欢迎大家关注公众号:小黄爱编程