生成字符向量的过程中需要注意:
1)在收集数据生成corpus时候,通过Word2Vec生成字向量的时候,产生了“ ”空格字符向量,但是加载模型是不会成功的。那么你不是生成的binary文件,就可以修改此文件,更改或删除。
示例参考代码如下:
import os
import gensim
from gensim.models import word2vec
from sklearn.decomposition import PCA
import numpy as np import logging
logging.basicConfig(format='%(asctime)s:%(levelname)s:%(message)s', level=logging.INFO) class TrainVector:
def __init__(self):
cur = '/'.join(os.path.abspath(__file__).split('/')[:-1])
# 训练语料所在目录
self.token_filepath = os.path.join(cur, 'train_data/token_train.txt')
self.pinyin_filepath = os.path.join(cur, 'train_data/pinyin_train.txt')
self.postag_filepath = os.path.join(cur, 'train_data/postag_train.txt')
self.dep_filepath = os.path.join(cur, 'train_data/dep_train.txt')
self.word_filepath = os.path.join(cur, 'train_data/word_train.txt') # 向量文件所在目录
self.token_embedding = os.path.join(cur, 'model/token_vec_300.bin')
self.postag_embedding = os.path.join(cur, 'model/postag_vec_30.bin')
self.dep_embedding = os.path.join(cur, 'model/dep_vec_10.bin')
self.pinyin_embedding = os.path.join(cur, 'model/pinyin_vec_300.bin')
self.word_embedding = os.path.join(cur, 'model/word_vec_300.bin') #向量大小设置
self.token_size = 300
self.pinyin_size = 300
self.dep_size = 10
self.postag_size = 30
self.word_size = 300 '''基于gensimx训练字符向量,拼音向量,词性向量'''
def train_vector(self, train_path, embedding_path, embedding_size):
sentences = word2vec.Text8Corpus(train_path) # 加载分词语料
model = word2vec.Word2Vec(sentences, size=embedding_size, window=5, min_count=5) # 训练skip-gram模型,默认window=5
model.wv.save_word2vec_format(embedding_path, binary=False) '''基于特征共现+pca降维的依存向训练'''
def train_dep_vector(self, train_path, embedding_path, embedding_size):
f_embedding = open(embedding_path, 'w+')
deps = ['SBV', 'COO', 'ATT', 'VOB', 'FOB', 'IOB', 'POB', 'RAD', 'ADV', 'DBL', 'CMP', 'WP', 'HED', 'LAD']
weight_matrix = []
for dep in deps:
print(dep)
weights = []
for line in open(train_path):
line = line.strip().split('\t')
dep_dict = {i.split('@')[0]:int(i.split('@')[1]) for i in line[1].split(';')}
sum_tf = sum(dep_dict.values())
dep_dict = {key:round(value/sum_tf,10) for key, value in dep_dict.items()}
weight = dep_dict.get(dep, 0.0)
weights.append(str(weight))
weight_matrix.append(weights)
weight_matrix = np.array(weight_matrix)
pca = PCA(n_components = embedding_size)
low_embedding = pca.fit_transform(weight_matrix)
for index, vecs in enumerate(low_embedding):
dep = deps[index]
vec = ' '.join([str(vec) for vec in vecs])
f_embedding.write(dep + ' ' + vec + '\n')
f_embedding.close() '''训练主函数'''
def train_main(self):
#训练依存向量
self.train_dep_vector(self.dep_filepath, self.dep_embedding, self.dep_size)
#训练汉字字向量
self.train_vector(self.token_filepath, self.token_embedding, self.token_size)
#训练汉语词性向量
self.train_vector(self.postag_filepath, self.postag_embedding, self.postag_size)
#训练汉语词向量
self.train_vector(self.word_filepath, self.word_embedding, self.word_size)
# 训练汉语拼音向量
self.train_vector(self.pinyin_filepath, self.pinyin_embedding, self.pinyin_size)
return if __name__ == '__main__':
handler = TrainVector()
handler.train_main()