题目描述
如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先。
输入输出格式
输入格式:
第一行包含三个正整数N、M、S,分别表示树的结点个数、询问的个数和树根结点的序号。
接下来N-1行每行包含两个正整数x、y,表示x结点和y结点之间有一条直接连接的边(数据保证可以构成树)。
接下来M行每行包含两个正整数a、b,表示询问a结点和b结点的最近公共祖先。
输出格式:
输出包含M行,每行包含一个正整数,依次为每一个询问的结果。
输入输出样例
说明
时空限制:1000ms,128M
数据规模:
对于30%的数据:N<=10,M<=10
对于70%的数据:N<=10000,M<=10000
对于100%的数据:N<=500000,M<=500000
样例说明:
该树结构如下:
第一次询问:2、4的最近公共祖先,故为4。
第二次询问:3、2的最近公共祖先,故为4。
第三次询问:3、5的最近公共祖先,故为1。
第四次询问:1、2的最近公共祖先,故为4。
第五次询问:4、5的最近公共祖先,故为4。故输出依次为4、4、1、4、4。
题解
RMQ求LCA的板子。。。
代码
//by 减维
#include<cstdio>
#include<iostream>
#include<cmath>
using namespace std; struct edge{
int to,ne;
}e[]; int n,m,s,num,ecnt,head[],dep[],fr[];
int f[][]; void add(int x,int y)
{
e[++ecnt].to=y;
e[ecnt].ne=head[x];
head[x]=ecnt;
} void dfs(int x,int fa)
{
dep[x]=dep[fa]+;
f[++num][]=x;
if(!fr[x])fr[x]=num;
for(int i=head[x];i;i=e[i].ne)
{
int dd=e[i].to;
if(dd==fa)continue;
dfs(dd,x);
f[++num][]=x;
if(!fr[x])fr[x]=num;
}
} void RMQ()
{
for(int j=;(<<j)<=num;++j)
for(int i=;i+(<<j)-<=num;++i)
if(dep[f[i][j-]]<dep[f[i+(<<(j-))][j-]])f[i][j]=f[i][j-];
else f[i][j]=f[i+(<<(j-))][j-];
} int lca(int x,int y)
{
int len=(int)log2(double(y-x+));
return dep[f[x][len]]<dep[f[y-(<<len)+][len]]?f[x][len]:f[y-(<<len)+][len];
} int main()
{
scanf("%d%d%d",&n,&m,&s);
for(int x,y,i=;i<n;++i)
{
scanf("%d%d",&x,&y);
add(x,y);
add(y,x);
}
dfs(s,s);
RMQ();
for(int x,y,i=;i<=m;++i)
{
scanf("%d%d",&x,&y);
if(fr[x]>fr[y])swap(x,y);
printf("%d\n",lca(fr[x],fr[y]));
}
}